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INTRODUCTION 

The methods which are used to synthesize the basic ring system of the 

numerous indole alkaloids are quite varied» Most of the synthetic routes 

are lengthy as a consequence of the presence of one or more centers of 

asymmetry in the natural products. However, certain wholly aromatic indole 

alkaloids lack these stumbling blocks» One of the alkaloids in this group 

is the compound flavopereirine» 

This investigation is undertaken to develop a convenient, rapid syn­

thesis of flavopereirine» Particular emphasis is to be placed on the 

feasibility of introducing catalytic dehydrogenation into the synthesis as 

a method of forming carbon-carbon bonds. 
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HISTORICAL REVIEW 

The Chemistry of Flavopereirine 

Introduction 

In recent years much chemical interest has centered on the alkaloidal 

constituents of plant materials which have been used in folk medicine. 

Although this interest was stimulated by the discovery of reserpine in 

the roots of the Indian apocyanaceous plant Rauwolfia serpentina (l), it 

has extended both to examinations of new plant material and to re­

examinations of previously studied materials. 

According to the folk-lore of Brazil, the bark of the apocyanaceous 

tree Geissospermum vellosii has the power to relieve fevers. Although this 

bark had been previously studied (2), several groups of workers re-examined 

the extraction and separation of its alkaloidal constituents. In doing so, 

they discovered several new alkaloids, among them, flavopereirine. 

Isolation 

In their attempts to improve the isolation of alkaloids already known 

to be present in Geissosperraum bark, as well as to analyze further the ex­

tracts of this bark, two independent groups of workers (3a, 3b, 4) found 

a new strongly basic orange-colored alkaloid in the bark of two Geissos­

permum varieties, G, vellosii and G. laeve. In addition, a third group of 

workers (5) independently isolated this substance as an impurity of a 

fraction containing the moderately basic alkaloids of the extract. The 

compound was named flavopereirine (3a) after its deep color and the popu­

lar Brazilian name — "pao pereira" — given to the tree. 
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The methods of all three groups were quite similar and can be summa­

rized briefly as follows. From three to seven kilograms of finely ground 

bark of G, vellosii or G. laeve were extracted exhaustively with ethanol, 

either for a week in a soxhlet type of apparatus using 95% ethanol (4) or 

by leaching an alcoholic paste of the bark with fresh 70% ethanol until 60 

liters of extract had been collected (3b)« 

Non-alkaloidal materials present in the extract could be largely re­

moved either by allowing the extract to stand five days at 0°C, (4) (thus 

precipitating about one-half of the material originally extracted) or by 

evaporating the solvent and treating the residue with dilute sodium 

hydroxide solution for two days (5). Since later steps in the purification 

automatically eliminated such impurities, this could be omitted (3b). 

The solid material remaining after the extracting solvent had been 

evaporated (or after sodium hydroxide treatment) was dissolved in a weekly 

acidic aqueous solution — pH 3.5 to 4 — from which weak bases could be 

removed by continuous extraction for four days with ether (4), The moderate­

ly strong bases were then removed by adjusting the pH to 7 with saturated 

sodium hydroxide solution and extracting continuously for eleven days with 

ether, or by adjusting the pH to 8 - 9 with sodium carbonate and extract­

ing first with ethyl acetate and then with chloroform (3b). Strong bases 

were recovered from the aqueous layer by making it strongly alkaline 

(pH 10 or greater) with sodium hydroxide and extracting continuously for 

seven days wiuh evhor (4) or tlzcc vdth chicrcfcrrr. (3b), Flavoper­

eirine was found largely in the latter extracts (3, 4) but was also present-

as a contaminant in the fraction of the moderately strong bases (5). 
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The strong bases could be fractionated further into two substances, 

flavopereirine and geissoschizoline (4). This was achieved by dissolving 

the strong bases in aqueous ethanol containing hydrochloric acid and pre­

cipitating the flavopereirine as the nitrate by addition of a saturated 

solution of sodium nitrate. Alternately, the hydrochlorides of the strong 

bases were treated with sodium hydroxide solution, extracted into chloroform 

and the dried chloroform solution passed through a column of alumina* 

Elution with chloroform which contained 0.5% to 2% of methanol produced 

flavopereirine, which was collected as the hydrochloride, decolorized-with 

charcoal and crystallised as the perchlorate (3b). In the former procedure 

flavopereirine nitrate was reconverted to the free base which was chromato-

graphed on alumina and isolated and characterized as the free base. 

The yield of flavopereirine from 6.87 Kg. of G. vellosii bark was 

2.1 g., 0.0306% (4) and of flavopereirine perchlorate from 6 Kg, of G, laeve 

bark, 1.17 g», 0.0102% (3b). 

Determination of Structure 

The structure of flavopereirine was determined simultaneously by the 

two groups of workers who isolated the compound. Janot, et al.(3a) based 

their proposed structure on two key pieces of evidence: the near identity 

of the ultraviolet absorption spectrum of flavopereirine to that of the 

known alkaloid sempervirine (IA) and the selenium-catalyzed high temperature 

degradation of flavopereirine to desethylalstyrine (II), a known compound 

which contained the same number of carbon and nitrogen atoms as flavo-

perpeirine. Hughes and Rapoport (6) uncovered and utilized the same two 

pieces of evidence. In addition they confirmed and extended the inferences 
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drawn from flavopereirine1 s ultraviolet absorption by a series of catalytic 

reductions of the compound, and degraded desethylalstyrine to known com­

pounds for a conclusive proof of its structure. 

The formula of free flavopereirine is The fact that the 

molecular weight was 246 and not some multiple of it was indicated by the 

fact that the base sublimed readily at 200°C. and 0.1 mm. Hg pressure. It 

was demonstrated conclusively when flavopereirine was first synthesized (7). 

The free base was optically inactive and lacked N-methyl, N-ethyl and 

C-methyl groups. 

Flavopereirine absorbs strongly in the ultraviolet, possessing a com­

plex spectrum which is altered when a neutral or acidic solution is 

basified: X max. (log6 ) in acidic or neutral ethanol, 230w/<(4«40), 238 

(4.43), 248 (4.39), 294 (4.14), 351 (4.25), 390 (4.14); in basic ethanol, 

231*y.(4.44), 241 (4.38), 255 (4.23), 288 (2.47), 316 (4.17), 360 (4.34) (4). 

These spectra in acid and base are nearly identical with those of a host 

of compounds of the 12H-indolq/^,3-&/quinolizine type structure: 12ft-

indolo/2,3-^7quinolizine itself (IB) (8), flavocoryline (IC) (9), flavo-

serpentine (ID) (10), and sempervirine (IA) (4) among others. When con­

sidered together with the elemental analysis and the lack of a simple 

N-substituent, this spectral comparison indicated clearly that flavopereir­

ine possessed either the indole^,3-a/q.uinolizine structure or a linear 

variation of it (III). In either case, all but two carbon atoms of the 

formula are accounted for by these analogies. 

A series of catalytic reductions of flavopereirine at varying acidities 

located the Cg group on ring D, Reduction over platinum in glacial acetic 
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acid introduced four moles of hydrogen after six days. The product 

exhibited ultraviolet absorption comparable to the octahydrosempevvirine 

(IV) prepared from seapervirine under similar conditions, and was thus a 

pyrrolopyridine type of structure with rings A and D reduced. Reduction 

for eight hours over platinum in methanol, to which a trace of solid 

potassium hydroxide had been added (10 mg. per 3 g. of flavopereirine), 

generated two compounds. One, a hexahydro derivative, was tentatively 

classified as a pyrid ̂ ,4-b7indole system on the basis of its ultraviolet 

spectrum; thus, ring D was both reduced and cleaved by hydrogenolysis. The 

other, a second octahydroflavopereirine showed ultraviolet absorption simi­

lar to the indolic absorption of {^-yohimbine (V) and was therefore derived 

from flavopereirine by the reduction of rings C and D. Reduction over 

platinum for eight hours in methanol, to which an excess of solid potassium 

hydroxide had been added (pH above 10), introduced four atoms of hydrogen. 

Since the ultraviolet spectrum of this compound was comparable with those 

of alstonine (VI) and serpentine (VI), only ring D must have been reduced. 

The two octahydro products and the tetrahydro product had a C-methyl group, 

whereas the hexahydro product had two C-methyl groupse Since the Kuhn-

Roth oxidation by which this was determined destroys methyl and ethyl 

groups attached to aromatic rings, the C^ fragment must be attached to a 

reduced ring in each case* The only ring which was commonly reduced was 

ring D; this must be the ring to which the C% is attached* In addition, 

this fragment must be an ethyl group, since only the hydrogenolytically 

cleaved hexahydro compound possesses two C-methyl groups. 

The mode of attachment of ring D to the norharmane skeleton as well 

as the exact location of the ethyl side chain were decided by selenium-
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catalyzed degradation of flavopereirine. When flavopereirine itself was 

heated to 300°C. with selenium metal, the ultraviolet spectrum of the ex­

tract of the product mixture indicated the presence of a trace of alstyrine-

like material. However, a mixture of the indolic actohydroflavopereirine 

and selenium metal evolved hydrogen seleniue at 240°C. in the presence of 

tetrahydroquinoline (to reduce formation of the pyrid /3,4-b/indole compound) 

and produced the alstyrine-like substance in excellent yield: 70 mg. of 

oil from 75 mg. of substrate (3b). This compound's identity with desethyl­

alstyrine was proved by its ultraviolet spectrum and the melting point and 

mixture melting point of its picrate (3b), and by comparison of its ultra­

violet spectrum and the melting points of its picrate, styphnate and 

hydrochloride with comparable values for desethylstyrine recorded in the 

literature (4) (3b, 4, ll). This product clearly placed flavopereirine 

in the 12H-indolo/2,3-a/quinolizine structural family and firmly located 

the ethyl side chain in the 3-position of ring D. It also served to deter­

mine that the pyrid/̂ 3,4-b/indole harman-like compound isolated both from 

mildly basic hydrogénation and from catalytic dehydrogenation was in fact 

l-(31 -methylpentyl) -9 H-pyrid/J, 4-b/ indole. 

In the absence of an authentic sample of desethylalstyrine for com­

parative purposes, Hughes and Rapoport (4) degraded their sample to prove 

its structure conclusively. Treatment of the picrate of desethylalstyrine 

yielded the free base which was reacted with hydrogen peroxide in acetic 

f /->» r\na <«4- OA^P TV* a o a « o +-i* n/-»"]/• 4*Vio o V*n >n rr r\ f 4* In o 

indole portion of the molecule to produce the keto-amide o-(5-ethylpicoli-

noylamino)-propiophenone. This compound was then hydrolyzed by refluxing 
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four and one-half hours in ION sulfuric acid to give two fragments : 

o-aminopropiophenone, identified by comparison of its melting point and 

the melting point of its benzoate with those values reported in the litera­

ture, and 5-ethylpicolinic acid, identified by comparison with an authentic 

synthetic sample. 

Thus, a series of catalytic reductions and a catalytic dehydrogenation, 

along with a study of the major de hydrogénation product and the ultraviolet 

spectra of all compounds introduced in the analysis, proved the structure 

of flavopereirine to be 3-ethylindolo^,3-i7Quinolizine (IE). 

Synthesis 

Flavopereirine has been synthesized by four groups of workers, each 

employing a different synthetic route. 

LeHir et al. (?) reacted tryptamine with ethyl 4-bromomethylhexanoate 

to obtain \-JjL-(3-indolyl)ethyi7~5-ethyl-2-piperidone, the key intermediate. 
The hexanoate was obtained by cyanoethylation of ethyl 2-ethylmalonate to 

give ethyl 2-ethyl-2-cyanoethylmalonate, followed by hydrolysis and 

decarboxylation to 2-ethyl-4-cyanobutyric acid and selective reduction of 

the diazomethane-produced ester of this acid with a potassium borohydride-

lithium chloride reagent to 2-ethyl-2-cyanobutanol which on treatment with 

ethanolic parogen bromide underwent hydrolysis of the cyano group to a 

carboxyl function, esterification of the carboxyl and displacement of the 

hydroxyl coup by bromide. Refluxing the resulting substituted hexanoate 

with tryptamine in absolute ethanol for seventy-two hours under nitrogen 

with added potassium carbonate and a trace of potassium iodide yielded 

the piperidone. 
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Refluxing this piperidone with phosphoryl chloride for three and one-

half hours in benzene produced hexahydroflavopereirine, isolated as the 

perchlorate. The free base was dehydrogenated to flavopereirine, character­

ized as the perchlorate which was identical with the material isolated and 

characterized by these same workers (3b). 

Prasad and Swan (8) formed 2-(4-ethoxybutyryl)-5-ethylpyridine by an 

inverse Grignard reaction between 2-cyano-5-ethylpyridine and 4-ethoxy-

propylmagnesium bromide and isolated the ketone after hydrolysis of the 

imino product with hydrochloric acid. This intermediate was re fluxed in 

acetic acid under nitrogen with constant-boiling hydrobromic acid for con­

version to 1-keto-l,2,3,4-tetrahydro-7-ethylquinolizinium. bromide, the key 

intermediate. 

Treatment of this quinolizinium salt with phenylhydrazine gave the 

phenylhydrazone which, under the conditions of the Fischer indole synthesis 

(refluxing in dry ethanolic hydrogen chloride) yielded 3-ethyl-6,7-dihydro-

12H-indolo^,3-a7quinolizinium chloride, isolated as the nitrate. This di-

hydro derivative of flavopereirine proved resistant to most attempts of de­

hydrogenation, but was converted readily to flavopereirine by heating the 

chloride salt for nine hours in glacial acetic acid with p-tetrachloro-

benzoquinone. This synthesis produced the highest melting flavopereirine 

perchlorate recorded in the literature (331°^., dec.), although a sample 

of the compound isolated by Bejar et al. (3a) (m.p. 307-308°C.) melted 

almost as high (330°G.) in the hands of Prasad and Swan (8). 

Thesing and Festag (12) obtained their key intermediate by reacting 

a quaternary salt of gramine with N-phenacyl-3-etbyl-pyridinium bromide, 
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formed by the reaction of phenacyl bromide with 3-ethylpyridine. Trimethyl-

amine was displaced by the latter reagent from gramine methosulfate to 

yield benzoyl-(3-indolylmethyl-) (3-ethyl-l-pyridinium)-methane bromide 

which without isolation was hydrolyzed in warm methanolic potassium 

hydroxide to yield N-(2-indoylethyl)-3-ethylpyridinium bromide and benzoic 

acid. 

Under the influence of Raney nickel in basic methanol, this pyridinium 

bromide took up two moles of hydrogen to form the tetrahydropyridine 

derivative which cyclized readily on standing for sixteen hours in hydro­

chloric acid solution. The oily octahydroflavopereirine product was 

undoubtedly a mixture of stereoisomers. Nonetheless, the indoloquino-

lizine mixture was readily dehydrogenated to flavopereirine, isolated and 

characterized as the perchlorate (m. p., 329°C.). 

The synthesis of flavopereirine by H. Kaneko (13) follows in most 

respects that of Prasad and Swan (8). The difference lies in the first 

two steps: Kaneko utilized 5-ethyl-2-pyridinecarboxylic acid, first form­

ing its acid chloride and then reacting this with 3-ethoxypropylcadmium 

Grignard reagent to obtain the 2-(4-ethoxybutyryl)-5-ethylpyridine of 

Prasad and Swan. This compound was converted to flavopereirine as described 

above. 

The Dehydrogenation of Piperidine Rings 

A variety of methods have been employed for the elimination of 

hydrogen from piperidine systems, ranging from the selective chemical 

reagents lead tetraacetate and mercuric acetate to high temperature 
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dehydrogenations catalyzed by palladium and selenium. 

Chemical Dehydrogenation 

Mercuric acetate oxidation of piperidine rings has been the subject 

of an extensive continuing investigation by N. J. Leonard and his co­

workers (14). It was found that quinolizidine (HI) was oxidized in five 

per-cent aqueous acetic acid by mercuric acetate to the quaternary dehydro-

quinolizidinium compound (VIII) isolated as the perchlorate (14a). The 

mechanism proposed at the time for this reaction is still invoked. It 

depicts an initial displacement of acetate ion from covalent mercuric 

acetate by the free electron pair of the nitrogen atom (IX to X) followed 

by elimination of acetic acid and mercury and subsequent oxidation of the 

latter to mercurous acetate by mercuric acetate (X to XI). The course 

of the reaction may be followed by observing the rate of precipitation of 

mercurous acetate, which is nearly quantitative in most cases. 

The infrared spectrum of this and other compounds, such as the 

Z£»3«O7 and the ̂ 5.4*07 systems (XII and XIII), indicated that the preferred 

form of the products was the eneamine, with the newly-introduced unsatura­

tion residing alpha-beta to the nitrogen, whereas the perchlorate salts 

existed entirely as the immonium salt (14b), 

Such oxidation need not stop at the two-electron stage. Further 

oxidation depends on the nature of the starting compound, the amount of 

reagent added and the conditions of the reaction. Thus trans-l-methyl-

dec ahydroquinoline (XIV) was converted to the hydroxyoctahydroquinoline 

(XV) in fifty-four percent yield (14c), and 5-oxo-l-azabicycI0/4•4•o/ 
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decane (XVI) was oxidized to l-(31 -hydroxypropyl) -pipe rid one (XVII) in 

thirty-three percent yield (l4d). 

Studies on a number of un symmetrical model compounds indicated that 

the imine products invariably had their double bonds in the most sub­

stituted positions (l4e). Thus, N-alkylated mono-, di- and tri- substi­

tuted piperidines were converted to the corresponding 3,4,5,6-tetrahydro-

pyridinium compounds (XVIII through XXIII). Absence of an alpha hydrogen 

on a given carbon atom prevented oxidation at that site (XXIV and XXVI). 

In an ingenious extension of this method, a series of 3-piperidino-

propanols were cyclized oxidatively to the corresponding bicyclic tetra-

hydro-l,3~oxazines (l4d) in yields ranging from 36 to 60 per cent. (XXVII 

to XXVIII, R & R1 is hydrogen or methyl), 

Although Leonard's studies of mercuric acetate oxidation are by far 

the most extensive, the reagent has been employed by many other investiga­

tors, usually as a method of introduction of the imino functional group. 

Thus the substituted tetrahydroisoquincline (XXIX) was oxidized to the 

dihydroisoquincline (XXX) in seventy-one per cent yield (15), and the 

benzo/™aj/quinolizine (XXXI) to the quinolizinium betaine (XXXII) 

quantitatively (l6). Reminiscent of the latter are the oxidations of 

canadine (XXXIII) to berberine (XXXIV) (17) and of the yohimbene (XXXV) 

to 5,6-dihydrosempervirine (XXXVI) (18). 

In an attempt to determine its structure, the involuted compound 

calycanthine (XXXVII) was oxidized to dehydrocalycanthine (XXXVIII) (19), 

whose structure was decided by hydrolyzing it to an amide alcohol and 
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neutral dilactam which was assigned the probably structure (XL)(20). 

Oxidation of p,p1 -di-(N-piperidino)-diethyl ketone (XLI) to the diamine 

dialdehyde (XLII) followed by eyeligation in situ gave a ketone which 

could be reduced to sparteine (21). 

A host of indole alkaloids have been converted to their 3-dehydro 

derivatives with this reagent. Included among these are corynanthine 

(XLIII) and alloyohimbine (XLIV)(22), a variety of reserpine compounds 

(e.g., XLV (23)), and yohimbone (XLVl)(l6). In connection with the last 

compound, it is worth noting that 3-epialloyohimbone (XLVII) was unreactive 

toward the conditions which oxidized yohimbone (18). 

Lead tetraacetate has seen slight use on piperidine ring systems, 

possibly because of the complex nature of the reaction or the lack of a 

sound mechanistic interpretation. In early studies of yohimbine (XLVIII) 

it was observed that either the didehydro or the tetradehydro product 

could be obtained (24) depending on the amount of reagent employed. 

Relatives of yohimbine which have been transformed into the ring C 

tetradehydro derivatives include f-yohimbine (XLIX) and yohimbane (25), 

as well as alloyohimbine (XLIV)(26). 

Oxides of chromium have been employed to convert piperidines to 

pyridines in excellent yields. Thus, from three grams of tryptophan, 

after base-catalyzed condensation with formaldehyde followed by a brief 

oxidation with boiling acetic acid-potassium dichrornate solution, were 

isolated two grams of norharman (L)(27)j the whole reaction sequence was 

carried out without isolation of intermediates. Similarly, tetrahydro-

norycbyrinsc£rbo::ylic acid (LI) converted to neryebyrine (LU)(2^) -
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6-benzyl-5,6-dihydrophenanthridine to 6-benzoylphenanthridine (LIII)(29), 

and 4#5-dimethylacridane to the corresponding acridine (LIV)(30)e 

Chromic oxide heated in acetic acid was used to oxidize the suitable 

tetrahydroazafluorenone to ethyl l-phenyl-3-methyl-4-azafluorenone-2-

carboxylate (LV)(31) as well as the suitable dihydropyridine to 3,5-

dicyano-2,6-dimethyl-4-»-nitrophenylpyridine (LVI)(32), 

The use of miscellaneous reagents appears scattered throughout the 

chemical literature. For example, a number of quinones have been examined 

for their ability to dehydrogenate piperidine compounds; Barclay and 

Campbell (33) showed that chloranil was the reagent best suited to oxidize 

a number of reduced carbazoles. 

Mercuric oxide in refluxing ethanol dehydrogenated 2-benzyl-l,2-

dihydroquinoline to 2-benzylquinoline (34). 

Ferric chloride appears to be well-suited for converting acridanes 

to their acridines both selectively and in good yields (35,36). 

A mixture of iodine and potassium acetate in alcohol provides a smooth 

conversion of 1,2,3,4-tetrahydroisoquinoline to a mixture of 3,4-dihydro-

isoquinoline and isoquinoline (37) and of tetrahydroalstonilinol (LVII) 

to alstoni.il inol iodide (LVIII) (38) * 

Oxygen in the presence of sodium hydroxide is capable of oxidizing 

l-amino-4-methylacridane to the corresponding acridine (LVX)(39) • Brief 

boiling with nitric acid converts the dihydropiperidine (LX) to diethyl 

4,3,-quinolyl=2,6=dimethyl-3,5-pyridinedicarboxylate (40). One-half hour 

at 190°C, in the presence of nitrobenzene dehydrogenates the adduct of 

aminophenyllithium and isoquinoline to l-(£-aminophenyl) -isoquinoline 

(in) (41). 
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Refluxing for one minute in acetic acid with triphenylmethyl per­

chlorate oxidizes 1,2-dihydro-l,2-dimethyl-quinoline to the quinaldine 

methoperchlorate (LHI)(42), 

Catalytic Dehydrogenation 

Although the reactivity of the metals nickel, palladium and platinum 

as dehydrogenation catalysts is similai' to that of the non-metals sulfur 

and selenium, there are enough similarities among the metals and sufficient 

differences between the two groups to merit discussing each group sep­

arately. 

Within a given period the catalysts have often been used inter­

changeably by altering slightly temperature, time of reaction or ratio of 

catalyst to substrate. 

Palladium, platinum and iridium can be used as reduction catalysts 

in the temperature range between 100 and 180°C. (43). Palladium begins to 

act as a dehydrogenation catalyst between 155 and 180°C., the other metals 

above 200°C. Whereas the piperidine ring is rapidly dehydrogenated above 

the lower temperature, the cyclohexane ring begins to lose hydrogen only 

above 280°C., and then more slowly than the piperidine ring (44)• Thus 

the mechanism advanced for the catalytic dehydrogenation of cyclohexane, 

which involves an initial formation of cyclohexene followed by dispropor­

tionate^ to give cyclohexane and cyclohexadiene which disproportionates 

into cyclohexene and benzene (45), may not apply to piperidine ring 

systems. However, the concept that the geometry of the surface of the 

metal lattice determines the specificity of metal catalysts in affecting 
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alicyclic compounds (46) probably still holds true for heterocyclic 

compounds. 

Piperidine itself can be dehydrogenated by palladium or platinum 

either as the free metals or supported on a variety of neutral materials 

(carbon, asbestos, silica gel, etc.) at temperatures ranging from 180° to 

500°C, (47). By recycling the products, the commercial yields of pyridine 

from this reaction approach quantitative levels. 

Substitution of the piperidine nucleus affects the course of de­

hydrogenation only if the substituents are on the nitrogen atom or 

geminally attached to one of the ring carbons. Thus, anabasine (LHII), 

cicutine (LHV), 2-phenylpiperidine and 4-phenyl-l, 2,3,6-tetrahydropyri-

dine (I«XV) are dehydrogenated in the usual manner to their respective 

pyridines by silver acetate (48), palladium-on-carbon (49), platinum-cn-

asbestos (50) and paHadiw-Gn-alunina in refluxing nitrobenzene (51), 

respectively. But N-alkyl groups are eliminated, as from N-methylpiperi-

dine (52) and l-methyl-4-phenyl-l, 2,3,6-tetrahydropyridine (51), to yield 

the suitable norpyridine derivatives. And geminal substituents can affect 

the dehydrogenation in one of two ways. Either a concurrent elimination 

can lead to a norpyridine: a series of l-benzyl-3,5-dimet hyl-4-alkyl-4-

hydroxypiperidines (in which the alkyl group could be ethyl, butyl or 

benzyl) was dehydrogenated over palladium at 240°C. to give the corres­

ponding 4-alkyl-3,5-dimethylpyridines (53)(e.g., LXVI to LXVU). Dehydro­

genation attempts may fail altogether: only starting material was re­

covered when 2-isopropyl-3,3-dimethylpiperidine was exposed to 40% 

palladium-on-carbon at 250°C. (52). 



www.manaraa.com

23 

In an interesting series of dehydrogenations, Prelog and coworkers 

(54) found that several l-methyl-3-acetyl-4-methylpiperidines rearranged 

on heating with selenium of palladium-on-carbon catalysts to yield 2,3,4-

trimethylpyridine, whereas the corresponding alcohols merely lost methane 

to give 3-ethyl-4-methylpyridine (p>-collidine)(i,e,, LXVIII to LXH). 

Where these alkyl substituents took the form of parts of a polycyclic 

ring system, ring fission can occur. Tropane (LXXII) when heated to 300°C. 

in the presence of palladium-an-asbestos yields the methylcycloheptenyl-

amine (LXXIII)(55) • And 1-azabicyclo^. 2 .ijheptane (LXXIV) and quinucli-

dine (LXXV) when heated at 350°C. with palladium-on-carbon or selenium 

lose hydrogen smoothly to yield 4-picoline and 4-ethylpyridine respectively 

(56). However, under these same conditions a small amount of quinoline 

was the only well-defined product from the reaction of quinolizidine. 

In contrast to this last observation 3H,4H-quinolizinium iodide or 

picrate (LXXVI) is converted readily, albeit in only fifteen percent 

yield, to the dehydroquinoHzinium salt (57) by refluxing with 1D% palladium-

on-carbon in ethanol or butanol. 

The quinoline nucleus appears to be more amenable to dehydrogenations. 

Bz-tetrahydroquinoline (LXXVII) is converted in eighty-five per cent, 

yield to quinoline in three hours over palladiumron-carbon at 300°C. 

(58), 6-methoxy-l,2,3,4-tetrahydroisoquinoline to the aromatic quinoline 

in ninety-five per cent yield in one hour at 2Q0°C. in naphthalene over 

Raney nickel (59), However the reactivity of both decahydroquinoline and 

decahydroisoquinoline depends on the nature of the ring juncture. Sup­

ported on asbestos either platinum or palladium catalyzes the dehydro-

genation of cis-decahydroquinoline to quinoline in two passes at 300°C,(60) 
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although the yields are better with platinum. However, the palladium is 

unable to affect the trans compound (LXXVIII). In one pass the platinum 

catalyst produces no quinoline (LXXHX), thirty per cent bz-tetrahydro-

quinoline (LXXX) plus starting material. Only after two passes over the 

platinum does quinoline appear in the product mixture (60). Methylation 

of the nitrogen atom does not alter the effect of the ring juncture but 

results in the appearance of N-methyl-py-tetrahydroquinoline (cairoline) 

(LXXXII) as the sole product (60); again the trans compound (LX3QCE) is 

unaffected by the palladium catalyst. (Concurrent studies on the decalins 

indicated that platinum is 1.5 times as fast as palladium in dehydrogenat-

ing trans-decalin, and that dis-decalin reacts distinctly faster than 

trans-decalin (6o).) These effects are reversed in the decahydroiso-

quinolines: the trans compound can be dehydrogenated to isoquinoline in 

three hours at 210°C. with a three-fold weight excess of palladium black 

catalyst, whereas the cis compound requires refluxing for forty-eight 

hours in tetralin with selenium and then is only dehydrogenated to bz-

tetrahydroisoquinoline (6l). 

The addition of substituents to the isoquinoline nucleus produces no 

rational effect on the course of yield in dehydrogenation. Thus 6,7-

dimethoxy-l-(3,4, 5-trimethoxybenzyl)-3,4-dihydroisoquinoline is dehydro­

genated in fifty per cent yield to (ffXXIII)(62) ; 6,7-dimethcoqr-3,4-di-

hydroisoquinoline in eighty-two per cent to (LXXXIV)(63) ; l-(2,3-di-

methoxybenzyl)-5,6-diethoxy-3,4-dihydroisoquinoline in ninety per cent 

to (LXXXV)(64); 6,7-methylenedioxy-l-(3'-pyridyl)-3-methyliso-3,4-di­

hydroisoquinoline in "poor yield" to (LXXXVI)(65). All reactions were 

performed over various types of palladium. 
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An inadvertent dehydrocyclization of an N-substituted tetrahydro-

isoquinoline was brought about when l-methyl-3-//j- (l, 2,3,4-tetrahydro-

2-isoquinolyl)-ethyl7oxindol (LXXXVIl) was heated with palladium for one 

hour at 200°C, in an attempt to obtain the 1,2-dihydro-derivative (66), 

The structure of the product of this reaction was subsequently postulated 

(67) and proved by synthesis (68) to be that of a spiro-oxindole (LXXXVHI). 

The palladium-catalyzed dehydrogenation of the partially reduced 

acridines has been studied in detail by Masamune and Homma (68). The 

results of their study can be summarized as follows. At temperatures up 

to 200°C., rearrangement and disproportionation predominated. From the 

octahydro compounds, more of the pyridine form (LXXXJX) was formed than 

the tetrahydropyridine form (XC). At 250°C. the pyridine form was con­

verted to dihydro and tetrahydro acridines to the extent of eighty percent. 

The cis and trans tetrahydropyv Idine forms (XC) were converted to the 

pyridine form: the dihydro and the tetrahydro acridines to about the same 

extent (about twenty percent of each type of product), the cis form 

proving to be somewhat more labile than the trans form. At 200°C. trans 

(XC) only isomerized to (LXHIX), whereas cis (XC) isomerized to (LXXXIX) 

and also lost hydrogen to give sane dihydro and tetrahydro compounds. 

A number of other tricyclic and tetracyclic piperidine derivatives 

have been dehydrogenated with palladium. They include 9A0-dihydro-

phenanthridine (XGI), converted nearly quantitatively to phenanthridine 

(69) with palladium-on-carbon at 260°C., N-acetyl-tetrahydrocytisine 

(XCII), converted to N-acetylcytisine (XCIII) in four hours over palladium 

between 250 and 280°C. (70), 2.6-dimethyl-l,2,3,4-tetrahydroanthrazoline 
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(XCIV) oxidized in thirty percent yield to 2,6-dimethyl-l, 5-anthrazoline 

by arsenic acid and palladium-on-carbon in water at 140°Ce (71) (other 

hydrogen acceptors gave lower yields, e.g., five percent with maleic acid); 

and the hexahydro-6,12-diazachrysene (XCV), converted to caly-canine 

(XCVI), a degradation product of calycanthine (19). 

In contrast to the above use of palladium and arsenic acid, nickel-

sodium arsenate was used in the last step of the synthesis of lysergic 

acid (XCVIII) which involved the conversion of an indoline to an indole 

group of a suitable precursor (XCVII)(72)« 

Catalytically induced dehydrogenations of polycyclic compounds (in­

cluding indole alkaloids) have been undertaken to eliminate certain hydro­

gens selectively, as in dehydrogenations of smaller molecules or in 

degradations of the substances to simpler, recognizable fragments for 

structure determinations. In the former case selectivity is enhanced by 

milder conditions which can be made possible by the use of various hydrogen 

acceptors. 

Majima and Murahashi (73) introduced maleic acid as a hydrogen 

acceptor in dehydrogenations catalyzed by palladium or platinum. The 

method was applied to the conversion of yohimbic acid (XCIX) to the ring C 

tetradehydro compound (C). Since its introduction, the most extensive use 

of palladiunwnaleic acid dehydrogenation has been made by Wenkert and 

Roychaudhuri (74) who oxidized twelve alkaloids and derivatives (such as 

3-iso-ajmalicine(CI) and akuammigine (CIl)) as part of a study of alkaloid 

stereochemistry. Other examples of the use of this method are the oxi­

dation of N-methylcorynantheidane and N-methyl-dihydrocorynantheane (CII 
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and CIV) to their tetradehydro derivatives (75) serpentinine (probable 

structure, (CV)) to a ring D tetradehydro compound (76) and ajmalicine 

(CVI) to the indoloquinolizinium compound flavoserpentine (CVII)(77)» 

Witkop (78) employed oxygen as the hydrogen acceptor in the catalytic 

oxidation of N-methylyohimbane (CVIII) to the methyl-tetrahydrosempervir-

inium salt (CIX) but no further examples of this method have been recorded. 

Kobayashi (79) used cinnamic acid in acetic acid as the acceptor in an 

attempted synthesis of yobyrine (CX)j the compound which he made (CXI) 

has since been shown not to be yobyrine (80). 

In an attempt to bridge the gap between the selectivity of the 

palladium-maleic acid reagent and the power of palladium itself, Kaneko 

(81,82) treated several compounds with palladium-on-carbon in refluxing 

para-cymene under carbon dioxide. Under these conditions, methyl reser-

pate (XLV,R=H) after five hours yielded 7-methoxyyobyrine (CXII) and 

py-tetradehydroreserpic acid lactone (CXIII) in a 7:1 ratio, yohimbine 

(XLVIII) after two hours yielded py-tetradehydroyohimbic acid (CXIV) 

as the sole product, and the quinolizinium chloride (CXV) after three 

hours yielded flavoserpentine (CVII). 

It was concluded that palladium^-on-carbon in cymene is a milder 

reagent than palladium without solvent or than selenium, comparable in 

effect to lead tetraacetate, since after only two or three hours refluxing, 

rings D and E remain unaffected. 

However, brief treatment with acidic palladium can produce similar 

results. In addition, the stereochemistry of the substrate can be em­

ployed in directing the course of the dehydrogenation, Thus, although 
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lead tetraacetate takes both yohimbane (CVIII) and alloyohimbane (CXVT) 

to their ring C tetradehydro derivatives (CIX and CXVII), treatment with 

acidified palladium for six minutes at 280°C, removed the hydrogens only 

from ring C of yohimbane CVIII) but from both ring C and ring D of 

alloyohimbane (CXVI), producing sempervirine (CXVIII)(83). Treatment of 

both compounds with neutral palladium produced yobyrine (CX)(83). In 

accordance with Witkop1 s observation (6l) that cis decahydroisoquinolines 

are more readily dehydrogenated than the trans isomers, these results were 

adduced as proof of the stereochemistry of the two substances. 

Acidic palladium (or neutral palladium employed with the amine hydro­

chloride) has also been used to produce flavocoryline (CXX) from both 

corynantheidane and dihydrocorynantheane (both C3ŒX)(84), and flavo-

pereirine (CXXII) from the hexahydro precursor (CXXI) (7,8,12). 

The use of neutral palladium catalysts on free base substrates seems 

invariably to lead to degradation in addition to dehydrogenation, Both 

corynantheidane and dihydr oc orynantheane (CXXIII) are degraded to alstyrine 

(CX2ŒV)(9) as are dihydrodesoxydecarbomethoxygeis soschizine (CXXVI)(85) 

and d^oxyajmaline (CXXV) (86). Desoxydihydroajmaline (CXXVII) is split to 

give a mixture of N-methylharmane (CXXVIII), ajarmine (CXXIX) and ajmyrine 

(CXXX)(87) by palladium-on-carbon at 250°C. — relatively mild conditions, 

Demethoxy-tetrahydrocorynantheine alcohol (CXXXI) is degraded to flavo-

corynanthyrine (CXXXII)(88,9), Serpentinine (CV) can be split and de­

graded to give desethyl alstyrine (CXXXIII)(89), Commenting on the fact 

that four isomeric yohimbines (type-structure XLVIII) were degraded over 

pslladitsffi-cn-carbcn to $dve hierh vields of Yobvriî).e (CX), LeMen concluded 
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(90) that hydrogenated indole-cyclohexane-pyridocolines underwent ring C 

cleavage whereas hydrogenated dialkylpyridocolones underwent clsavage of 

ring D. 

One instance of the use of thallous oxide as a dehydrogenating agent 

is recorded in the chemical literature. In this study yohimbic acid (XCIX) 

was converted to chanodesoxy-yohimbol by means of thallous oxide at 

3oo°c. (cran) (91). 

Neither of the metalloids selenium and sulfur is a catalyst since 

reaction intermediates or products including the metalloids can be 

isolated from reactions in which they are employed. Classically, however, 

they are discussed together 'with the noble metal catalysts because their 

effect on substrates is quite similar to the effect of the catalysts. 

Simple piperidine rings have seldom been dehydrogenated with either 

sulfur or selenium. A variety of dihydropyridine esters (e.g., N-methyl-

dihydro- )f-phenyl-lutidine-dicarboxylic esters, CXXXV) have been dehydro­

genated to the corresponding des-N-alkyl pyridines (92) using sulfur at 

215°C. Under similar conditions, a number of poly-substituted piperidines 

and hydroxypiperidines (e.g., 2,6-diphenylpiperidine) were dehydrogenated 

to their pyridines in yields of eighty-five to ninety-nine percent (93)* 

An interesting case of rearrangement during dehydrogenation was 

recorded by Prelog et al. (94). When l-methyl-3-acetylpiperidine was 

treated with selenium at 300°C. in a sealed tube, the abnormal product 

2.3-dimethylpyridine was isolated as the picrate. To show that this 

product was not simply due to a migration of the N-methyl, the starting 

material was reduced under the Wolff-Kishner conditions and the resulting 
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l-methyl-e-ethylpiperidine subjected to an identical dehydrogenation 

treatment. The product in this case was 3-ethylpyridine, characterized 

as the picrate. The mechanism depicted for this rearrangement is a modi­

fication of the Lipp reaction (95). In this reaction, a 1,3-disubstituted 

tetrahydropyridine rearranges and hydrolyzes in aqueous acid (CXXXVI to 

CXXXVII), then condenses with formaldehyde and recyclizes in a Mannich 

reaction (CXXXVII to CXXXIX). The reverse of such a sequence would be 

autocatalytic. Loss of the alpha proton (CXXIX to CXL) followed by 

hydrolysis (by traces of water initially present or formed by concurrent 

dehydration) leads to the ketone-aldehyde (CXLI) which can rearrange and 

cyclize to the quaternary tetrahydropyridinium ion (CXLII). Reduction, 

demethylation and dehydrogenation of this intermediate could give the 

observed product (CXLIII). 

Selenium was also effective in dehydrogenating trans-decahydro-

6-methylquinoline and alpha-methyl-octahydroindole to the respective 

quinoline and indole (96). 

A large number of alkaloids which contain the nor-harmane nucleus 

(L) have been subjected to selenium dehydrogenation. In fact, this reac­

tion is generally used as a diagnostic tool in structure determinations. 

If a given alkaloid yields yobyrine (CX) or a related compound, it is con­

sidered to have a yohimbine-type (XLVIII) skeleton. If an alkaloid yields 

alstyrine (CXXIV) or a related compound, it is felt to have an ajmalicine-

type (e.g., 3-iso-ajmalicine, CI) skeleton. Thus, the following isomers 

of yohimbine yielded yobyrine when heated with selenium between 250 and 

300°C.: yohimbine (97),(^-yohimbine (rauwolscine, corynanthidine)(90,99)» 
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{3-yohimbine (26,100), Y'-yohimbine (25), 3-epi-<X-yohimbine (isorauhimbine) 

(101,102), corynanthine (103). Yohimbyl alcohol (CXLIV)(l04) and deser-

pidinediol (GXLVI, R=H)(l05) both yield methyl-yobyrine (CXLVA) on 

selenium dehydrogenation due to the fact that the carboxyl group at C-l6 

has been reduced, and thus can no longer be lost through decarboxylation. 

Similarly, reserpinediol (GXLVI, R=0Me) yields the methoxylated methyl-

yobyrine (CXLVB)(l06). Sempervirine (IA) on heating with selenium yields 

N-methylyobyrine (CXLVA, NH=NMe)(l07)« 

In addition to forming yobyrine on dehydrogenation, the yohimbine 

isomers also generally produce a small amount of keto-yobyrine (GXLVII)e 

The mechanism underlying this observation is thought (102) to involve an 

initial cleavage of ring 0 between N-4 and C-21, followed by rotation of 

ring D to place the methyl group at the C-l6 position and the carboxyl 

group at the C-21 position. If this mechanism is valid, the formation of 

keto-yobyrine therefore places the carboxyl group unequivocally at C-l6 

of the parent alkaloid. 

Ring B heterocyclic indole alkaloids such as ajmalicine (CXLVIIIA) 

(<(-yohimbine, raubasine, tetrahydroserpentine) and ring E seco indole 

bases, such as corynantheine (CXLVIIIB) undergo cleavage of ring C on 

dehydrogenation to form alstyrine ( CXXIV). Examples of such compounds are 

ajmalicine (108); mayumbine (109); alstonine (llO)j tetrahydro-alstonine 

(ill); serpentine (112); aricine (113); akuammigine (114); serpentinine 

(115); corynantheine (116,117); tetralydrodesmethoxycorynantheijie alcohol 

(118); and dihydrodemethoxy-iso-geissospermine (85). 

In addition, flavopereirine (IE) has been converted to desethylal-

styrine (II) in excellent yield by boiling with selenium in 
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tetrahydroquinoline (6), ajmaline (CXLIX) to 9-methylharmane (CL) over 

selenium at 300°C. (119), and cryptolepine (CLI) to quindoline (CLU) under 

the same conditions (120). 

Catalytic Formation of Carbon-Carbon Bonds 
by Dehydrogenation 

Although much study has gone into the mechanisms and yields of cata­

lytic cyclodehydrogenation reactions, most of it involves hydrocarbons in 

operations on an industrial scale. Few studies involving a directed 

synthesis of carbon-carbon bonds have been reported. 

When heptane was dehydrogenated at 475°C., both heptene and toluene 

are formed (121). The amount of heptene remained fairly constant whereas 

the amount of toluene increased with longer exposure to the catalyst. 

3-(2-Pyridyl)-1-propanol (CLIII) was converted to pyrrocoline (CLIV) 

in fifty percent yield by refluxing with palladium-on-carbon (122). The 

tetrahydro-dibenzophenanthrene (CLV) was cyclized and aromatized by re-

fluxing with palladium-on-c arbon, to give 1,12-benzoperylene (CLVI) in 

ninety-five percent yield (123). The related series of compounds diphenyl-

methane (CLVII), dicyclohexylmethane (CLVIII), dibenzyl (CLIX), dicyclo-

hexylamine (CLX) and diphenylamine (CLXI) was subjected to platinum-on-

carbon at 300°C. (124). Each member of the series yielded a corresponding 

cyclo-aromatic product (CLXII to CLXTV) in unspecified yields. Under 

these same conditions 1,3-diphenylpropane failed to cyclize (125). Below 

300°C. dibenzyl also failed to cyclize. The yield of carbazole (CLXIV) 

from the aromatic precursor (CLXI) was lower than that from, the saturated 

Z *•" »r\ / 1 ̂  1 \ 
vi'ic \ v-i-my y Às~i+j • 
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2-Benzylpyridine (CLXV) was cyclized to the azafluorene (CLXVI) 

at 580°C, over copper turnings prereduced with hydrogen at 300°C. (126). 

Similarly, 2-ethylaniline (CLXVII) at 670°C. is cyclized to indole (CLHII) 

over prereduced copper chroniite-on-carbon in thirty-two percent yield (127), 

whereas at 560°C. 2-vinylaniline (CLX1X) is produced in sixty-five percent 

yield. 

When the heterocycles pyridine (CLXX), quinoline (CLXXl) and indole 

(CLXVlll) were subjected to catalytic dehydrogenation (nickel-on-alumina 

at 320°C, for the first two, sulfur at 120°C. for the third) the corres­

ponding dimers 2,2'-dipyridyl (CLXHI)(128), 2,2'-diquino3yl (CLXXIII) 

(129), and 3»3'-diindolyl (CLXXIV)(130) were formed in about fifteen per­

cent yield. 

In contrast to the above examples, the tetrahydro compound (CLXXV) 

gave only dehydrogenated product (l-(2,3-dimethylphenyl)-2-( 1,2-dimethyl-

5-naphthyl)-ethane, CLXXVI) on treatment with palladium-on-carbon at 370°C. 

(131). 
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EXPERIMENTAL 

Melting points were determined on a Kofler melting point apparatus. 

"Alumina" refers to commercial AlgCy which was treated for two days 

with ethyl acetate, filtered, washed with water and methanol, and dried 

twenty-four hours under an infrared lamp. 

"Cellulose" refers to Whatman cellulose powder ("Standard Grade"). 

Nitrogen gas was prepared from commercial tank gas by the method of 

Fieser (132, p. 299). 

A Perkin-Elmer model 21 spectrophotometer, a Beckman model DK-2 

spectrophotometer and a Varian Associates spectrometer recorded the 

infrared, ultraviolet and nuclear magnetic resonance spectra, respectively. 

Synthesis of N-^ -(3-indolyl-)ethyl^piperidine 

The synthesis of Dr. B. Wickberg (Postdoctoral Fellow, Iowa State 

University, Ames, Iowa. Syntheses of indole bases, i960) was followed. 

Synthesis of Ethyl Indoleacetate 

Indoleacetic acid (17.5 g«, 0.1 mole) was dissolved in commercial 

absolute ethanol (lOO ml.), 3 ml. concentrated sulfuric acid added and the 

solution r-efluxed overnight with partial azeotropic removal of water. 

The cooled solution was neutralized with aqueous sodium bicarbonate 

and evaporated under vacuum to a small volume. The organic material was 

extracted into ether, the ethereal layer dried over anhydrous potassium 

carbonate, the mixture filtered and the ether distilled. The remaining 
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oil (15.8 g., 78% yield) was distilled under 0.5 mm. Hg pressure, the 

fraction distilling at 155-l60°C, collected, chilled in Dry Ice until 

crystals appeared in the glassy product, and refrigerated until entirely-

crystalline, The resulting crystals melted 40-41°C. A sample for analy­

sis was recrystallized from benzene. 

Anal. Calcd. for C, 70.91; H, 6.45; N, 6.89. 

Found: C, 70.89; H, 5.98; N, 6.86. 

Unreacted indoleacetic acid (0.53 g») was recovered by acidifying the 

sodium bicarbonate solution with dilute aqueous hydrochloric acid. Based 

on 17 g. of starting material, the yield of crystalline product (16.7 g.) 

was 82%, 

Hitherto this compound had not been isolated as a crystalline solid, 

Synthesis of Methyl Indoleacetate 

Indoleacetic acid (5 g»> 0.028 mole) was dissolved in 50 ml. of 

commercial absolute methanol and dry hydrogen chloride gas bubbled into 

the reaction vessel for twenty seconds. The flask was stoppered and 

allowed to stand overnight at room temperature. 

After standing, the solvent and hydrogen chloride were removed under 

vacuum and the remaining oil dissolved in ether. This ether solution 

was washed until neutral with aqueous sodium bicarbonate solution, then 

with water, dried over anhydrous sodium sulfate and filtered. The ether 

was removed from the filtrate under vacuum and the residual oil used 

without further purification for the synthesis of the amide. 
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On repetition of this procedure, the oily product was distilled through 

Hickman-type still at 0.5 mm. Hg pressure and a bath temperature of 210°C. 

The distillate showed a refractive index of 1.5843 at 21,5%. and a 

carbonyl absorption maximum (in chloroform) at 5.75/4. Based on the 

recovery of 0.2 g. of starting material, the yield of ester (3,2 g.) from 

5 g, indoleacetic acid was 62%. 

Synthesis of 3-lndoleacetyl Piperidine 

Methyl indoleacetate from the preceeding step was dissolved in 25 ml, 

of piperidine dried over sodium hydroxide and the solution refluxed over­

night under nitrogen. 

The mixture was concentrated under vacuum on the steam bath, chloro­

form added and the solution extracted with dilute aqueous hydrochloric 

acid. The chloroform layer was washed with dilute aqueous sodium bicarb­

onate solution until neutral, then with water, dried over anhydrous sodium 

sulfate, filtered, and the solvent removed under vacuum. The product was 

an oil possessing amide carbonyl absorption at 6,08yuc(in chloroform). The 

yield was 4.83 g., 71% from indoleacetic acid. All attempts at crystalli­

zation failed and it was reduced directly to the amine, 

Synthesis of N-/j3 -(3-indolyl-)ethyl^piperidine 

3-lndoleacetyl piperidine (4.83 g., 0.02 mole) was dissolved in 200 ml. 

tetrahydrofuran (stored over sodium wire and distilled over lithium alumi­

num hydride directly into the reaction vessel) in a flame-dried apparatus 

under nitrogen. To this solution 2 g. (0.053 mole) of lithium aluminum 
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hydride was added and the mixture refluxed with stirring under nitrogen 

for four hours. 

Excess hydride was destroyed by careful addition of a sodium sulfate-

water slurry to the cooled reaction mixture, the mixture filtered and the 

filter cake washed with ether. The mixture of solvents was evaporated 

under vacuum from the product and ether added. This ethereal solution 

was washed with water and extracted with 1.5 N aqueous hydrochloric acid. 

The acidic layer was back-extracted once with ether, then neutralized with 

solid sodium bicarbonate followed by dilute sodium hydroxide solution. 

The liquid was then decanted from the precipitated solids and the solids 

washed with water until neutral. 

The yield of dried solid was 2.86 g. (62%), m.p. 147-150°C. Crys­

tallization from ethanol-water raised the melting point slightly to 148-

150°C. 

A sample of the solid was sublimed at 1 mm. Hg pressure and 140°C. 

bath temperature. It was identical in melting point (151-153°C.) and 

infrared spectrum (in chloroform) with an authentic sample of N-^3 -(3-

indolyl-) ethyls/piperidine. A mixture of the two materials melted at 

151-153°C. 

Syntheses of 12H-Indolo^,3-a7quinolisine Compounds 

Synthesis of 5-ftydroxvpentanal 

The method of G. F. Woods, Jr. (134) was followed. The product 

boiling at 54°C. and 3 nm« Hg pressure was used. It exhibited an infra­

red absorption maximum at 2.7̂ .and no maxima between 4=5 and 6=̂ 1 in CQ14). 
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Synthesis of 1.2.3.4-Tetrahydro-12H-indolo/2.3-a7- quinolizinium Salts 

Except for the purification of product on a cellulose column, the 

preparation of the hydrobromide salt followed the procedure of Groves and 

Swan (335). 

A mixture of 5-hydroxypentanal (l g., 0,01 mole) and trypt amine 

hydrochloride (l g., 0.0051 mole) in 20 ml. of water vras stirred under 

nitrogen for two days at a bath temperature of 44°C. 

The reaction mixture was cooled, basified with 10% aqueous sodium 

hydroxide solution and extracted with ether. The ether extract was dried 

over anhydrous potassium carbonate, filtered and the ether evaporated 

under vacuum. 

The residual material was dissolved in methanol and treated with 

anhydrous hydrogen chloride gas. After the addition of palladium-on-

charcoal (5%, 2 g.) and further treatment with hydrogen chloride, the 

mixture was freed of methanol under vacuum. The reaction mixture was 

flushed with nitrogen and heated under nitrogen at 200°C, for six minutes 

and cooled. This dehydrogenation mixture was extracted overnight with 

boiling methanol, and the solvent removed from the extract under vacuum. 

To the resultant gum, 25 ml. of aqueous hydrobromic acid was 

added and the mixture refluxed forty minutes. 

This reaction mixture was freed of water and excess hydrobromic acid 

and under vacuum on the steam bath and the tarry residue dissolved in 

chloroform and a small amount of methanol. The mixture was made strongly 

basic by the addition of 10% aqueous sodium hydroxide solution and ex-

ui/ûCûëu W-Uvii vi'LLOPOZvlïii uïivILi. IiO j-LU/ûu^I y bJ-LvW vvû.vi d^ccu'^u •ùii viië 
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chloroform layer. The combined chloroform extracts were washed once with 

water and dried over anhydrous potassium carbonate. These extracts were 

filtered and glacial acetic acid was added dropwise until no further 

color change occurred. Solvent and excess acetic acid were removed under 

vacuum. 

The residue was taken up in a small volume of dry chloroform and 

chromatographed on a column of 15 g. of cellulose which had been slurried 

in dry chloroform with 5.6 ml. of 0.05 M aqueous acetic acid. Fifty ml. 

fractions were collected and to each beaker a few ml. of approximately 2N 

aqueous hydrobromic acid solution were added to prevent air oxidation cf 

free bases. 

Tars were eluted with wet Skellysolve B-chloroform. Elution with wet 

chloroform-n-butanol (4:1, v:v) and evaporation of the solvent and excess 

hydrobromic acid yielded pale yellow needles. Crystals of fraction 31 

melted 278-281°C, The literature value for the melting point of 1,2,3,4-

tetrahydro-12H-indolo^,3-a7quinolizinium bromide (135) is 280°C. (dec.), 

A test amount of the perchlorate salt, formed in glacial acetic acid con­

taining 10% of 70% perchloric acid melted at 233-235°C. After three 

recrystallizations from ethanol it melted at 241-246°C, 

Crystals from fractions 30 to 32 were combined and recrystallized 

from methanol-acetoneî m.p. 283-284°Ce, yield 43.0 mg. 

Solids from fractions 25 to 29 were combined, converted to the 

perchlorate as above and recrystallized from n-propanol: m.p. 235-237°C«, 

yield 26.8 mg. Total yield of tetrahydroquinolizinium salts, 4.5% (based 

on 1 g* of tryptamine hydrochloride). 
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An analytical sample of the perchlorate was recrystallized from 

water (using decolorizing charcoal) and then from n-propanol. After dry­

ing overnight, undéi high vacuum at 80°C. it melted at 242-247°C. 

I. R. Spectrum (KBr pellet) : Figure 1. 

U. V. Spectrum (95% ethanol),\max. (log E): 252 top (4.53), 306 (4.27), 

365 (3.65). 

Anal. Calcd. for C, 55.82; H, 4.69; N, 8.68. 

Found: G, 55.74; H, 4.78; N, 8.75. 

Synthesis of 12H-Indolo/2,3-^quinolizlnium Salts 

l,2,3,4-Tetrahydro-12H-indolo/2,3- l̂3uinolizinium bromide (9.9 mg., 

32.7 micromoles) was intimately mixed with 20 mg. 5% palladium-on-charcoal 

catalyst which had been washed with dilute aqueous hydrobromic acid, then 

water, and dried. The mixture was heated for nine minutes under nitrogen 

at 300°C. 

The resulting mixture was cooled and extracted repeatedly with 

methanol to which a few drops of glacial acetic acid, were added, until 

the extracts remained colorless. The extracts were combined and evapor­

ated under vacuum, whereupon crystals melting at 267-272°Ce formed= The 

mixed residue was taken up in a small volume of chloroform and chromato-

graphed on a column of 4 g. of cellulose which had been slurried in dry 

chloroform with 1.3 ml. of a 0.05M aqueous acetic acid solution. Dilute 

aqueous hydrobromic acid was added to each fraction as it was collected to 

prevent air oxidation of free bases. 

Elution with wet chloroform-n-butanol (5:1 by volume) yielded less 

than one milligram of solid: m. p. of picrate, 250-252°C. (literature 
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value of m. p, of 12H-indolo/2,3-^7quinolizinium picrate, 252-253°C. (8)). 

Synthesis of l,2,3,4,6,7,12,12b-0ctahydroindolo^2,3"*7quinoliz:ine 

1,2,3,4-Tetrahydro-12H-indolo^,3-a7quinolizinium bromide (ll.l mg., 

36.7 micromoles) was mixed with sodium borohydride (36 mg., approximately 

4 milli-equivalents) in 5 ml, methanol. The mixture was allowed to stand 

at room temperature two and one-half hours. 

On removing solvent under vacuum, dissolving the residue in a mixture 

of chloroform and aqueous sodium hydroxide, washing the chloroform layer 

with water and drying over anhydrous potassium carbonate, filtering and 

removing solvent, crystals were obtained from methanol which melted 280-

295°C, This crystalline material was combined with its mother liquors, 

the solvent removed under vacuum and the combined material reduced again 

in methanol-water using a gross excess of sodium borohydride. The reduction 

mixture was refluxed for two hours after addition of all sodium boro­

hydride, cooled, and solvents removed under vacuum. Treatment of the 

gummy residue ' with chloroform-aqueous sodium hydroxide, followed by 

washing, drying, filtering and evaporating solvent as above yielded a 

solid melting over a wide range (125-140°C.)« Sublimation of this solid 

raised its melting point range to 138-148°C. and crystallization from 

Skellysolve B raised it to 149-151°C. Its mixed melting point with an 

authentic sample of the octahydroquinolizine compound was 149-151°C. 

The infrared spectrum (in chloroform) of this material was identical with 

that of the authentic compound. The literature value of the melting 

point of this compound as given by several groups of workers (135,136,8) 

falls between 149 and 153°C. Yield: 3.2 mg., 38.6%» 
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Investigations of Dehydrogenations 
Catalyzed by Palladium-on-Charcoal 

The feasibility of using palladium-catalyzed dehydrogenation as a 

method of ring-closure as well as the optimum conditions for the reaction 

were investigated in a series of one milligram runs. The following 

description is of typical runs. 

Preliminary Dehydrogenations of 
N-//S -(3-indolvl-)ethyl-/piperidine 

N-^6-(3-indolyl-)ethyl^7piperidine (10 mg.) was dissolved in 10 ml. 

of ether and one ml, aliquots of this solution were transferred quantita­

tively into micro-cones by the use of ether. The appropriate catalyst 

was added (approximately 1 mg, of palladium black or 2 mg. of % palladium-

on-charcoal) and the two substances mixed intimately, A drop of methanol 

was added and anhydrous hydrogen chloride gas was bubbled through the 

pasty mass. 

The resulting mixture was stripped of solvent, blanketed in an atmos­

phere of dry nitrogen from a hypodermic needle and heated in a Wood's metal 

bath according to the following scheme: 

Run Time, min. Temperature, °C, Catalyst 

1 12 255-260 Pd 

2 25 255-260 Pd 

3 14 295-305 Pd 

4 25 295-305 Pd 

5 12 255-260 Fu/C 
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Run Time, min. Temperature, °C. Catalyst 

6 25 255-260 Pd/C 

7 14 295-305 Pd/C 

8 25 295-305 Pd/C 

Each sample was allowed to cool under nitrogen. The reaction mixture 

was transferred to a 10 ml. volumetric flask with the aid of 95% ethanol, 

a drop of 6N aqueous hydrochloric acid solution added, and the flask filled 

to the mark with 95% ethanol. 

These flasks were allowed to stand for at least one hour. The con­

tents of each was decanted in turn into a U. V. spectrophotometer cell and 

the absorption measured in the region of 200 nyi to 420 mp. 

The results are shown in figure .2. 

The results of the preliminary dehydrogenation studies are tabulated 

below. The relative absorption values are most significant within a single 

series. Between two series, two runs employing similar conditions, one 

from each series, should be used as the basis for comparison; slight 

differences in weights between different series prevent exact comparisons. 

Series A 

Amount of substrate: 1 mg. 

Catalyst: 5% Pd/C., approx. 3 ™g. 

Temperature: 300-305°C « 

Treatment: Runs 1-3: free base, commercial untreated catalyst 

Runs 4-6: substrate and catalyst treated with anhydrous 

HC1 gas 
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Atmosphere: nitrogen 

Time, Relative Absorption at 
Run min. 306 npi 345 mp 366 mji 388 mp. 

1 2 0.39 0.12 0.14 0.9 

2 4 0.125 0.1 0.09 0.07 

3 8 0.37 0.17 0.17 0.14 

4 1 0.20 0.06 0.04 0.02 

5 4 0.32 0.29 0.2 0.22 

6 8 0.61 0.87 0.66 0.65 

Series B 

Substrate, Catalyst, Temperature: as in Series A 

Treatment: anhydrous HC1 gas added to all samples 

Atmosphere: air 

Time, Relative Absorption at 
Run min. 306 mp 345 mji 366 mji 388 mfL 

1 6 0.01 0.01 0.0 0.0 

2 7 0.02 0.01 0.0 0.0 

3 9 0.02 0.01 0.0 0.0 

4 19 0.01 0.0 0.0 0.0 

Series C 

Substrate, Catalyst, Temperature, Treatment: as in Series B 

Atmosphere? nitrogen 
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Extraction: Runs 1-4: glacial acetic overnight, centrifuge, decant, 

remove solvent* 

Runs 5-8: glacial acetic acid plus a drop of benzene 

for two hours, centrifuge, decant, remove 

solvents. 

Tims. Relative Absorption at 
Run min. 306 mji 345 mp 366 mji 388 mp. 

1 6 0.03 0.01 0.01 0.0 

2 7 0.10 0.14 0.10 0.10 

3 8 0.20 0.29 0.21 0.20 

4 10 0.20 0.29 0.21 0.21 

5 8 0,29 0.36 0.2? 0.25 

6 10 0.34 0.42 0.31 0.29 

7 12 0.42 0.52 0.38 0.36 

8 21 0.27 0.32 0.23 0.22 

Series D 

Substrate: 3 mg. 

Catalyst: Runs 1-4: 5% Pd/C, approx. 2 mg. 

Runs 5-8: Pd black, approx. 1 mg. 

Treatment: 1 mg. KgCO^ added 

Run 
Time, 
min. 

°C. 

Temp. 306 mp 
Relative Absorption at 
345 mp 366 nqi 388 mp 

1 12 260 0.23 0.25 0.20 0.18 

2 24 260 0.22 0.20 0*17 0*14 
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Run 
Time, 
min. 

°c. 
Temp. 306 mp 

Relative Absorption at 
345 mp 366 mp 388 mp 

3 12 300 0.06 0.05 0.04 0.03 

4 24 300 0.12 0.05 0.04 0.03 

5 12 260 0.15 0.05 0.03 0.02 

6 24 260 0.16 0.06 0.04 0.02 

7 12 300 0.08 0.03 0.02 0.0 

8 24 300 0.06 0.02 0.01 0.0 

(Note: quantities of white vapor were evolved in all runs of Series 

D; the spectra of runs 5 and 6 were identical with that of the starting 

material; run 6 showed three-fourths of the 280 mm. absorption of run 5») 

Series E 

Amount of Substrate: 1 mg. 

Catalyst: 5% Pd/C. approx. 2 mg. 

Treatment: 1 drop 6N HC1 

Atmosphere: nitrogen 

Run 
Time, 
min. 

°c. 
Temp. 306 mp 

Relative Absorption at 
345 y 366 mp 388 mp 

1 12 240 0.80 0.96 0.48 0.36 

2 24 240 0.64 0.28 0.24 0.16 

3 36 240 0.64 0.36 0.33 0.24 

4 12 270 1.04 0.60 0.56 0.40 

5 24 270 0.44 0.31 0.28 0.19 
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Run 
Time, 
min. 

°C. 

Temp. 306 Ofl 345 mp 366 E91 388 qu 

6 36 270 0,84 0.38 0.31 0.27 

7 12 300 0.25 0.29 0.24 0.20 

8 24 300 0.95 0.86 0.70 0.64 

9 36 300 0.78 0.80 0.63 0.57 

Large-Scale Dehydrogenation of 
N-^3 -(3-indolyl-) ethyl^piperidine 

N-^3-(3-indolyl-)ethyl;;7piperidine (500 mg., 1,77 mmoles.) was 

dissolved in a minimum amount of methanol and anhydrous hydrogen chloride 

gas passed into the solution until it was saturated. The palladium-on-

charcoal catalyst (5%, 1 g.) was added cautiously. (Note: methanol 

ignited spontaneously several times as the catalyst was poured into the 

flask; other solvents which did not ignite — ether, chloroform — were 

less desirable because of the lower solubility of the substrate or hydrogen 

chloride in these.) After evaporation of the solvent under vacuum, the 

flask was purged with dry nitrogen for several minutes. A constant 

pressure of nitrogen was then maintained over the contents of the flask 

while it was immersed in a Wood's metal bath heated between 295-305°C. 

Strong evolution of vapor occurred between four and eight minutes of 

heating. The flask was heated for twenty minutes. 

The flask was cooled under nitrogen and its contents transferred to 

an extraction thimble. The solids were extracted continuously for 
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eighteen hours with commercial anhydrous methanol to which a few ml, of 

glacial acetic acid had been added. 

Solvents were removed under vacuum from the resulting yellow extract 

and the residue treated with a mixture of 10% aqueous sodium hydroxide 

and chloroform. The aqueous layer was extracted repeatedly with chloro­

form until the lower layer remained colorless. The chloroform extracts 

were combined, washed once with water, dried over anhydrous potassium 

carbonate and filtered. Glacial acetic acid was added to the filtrate, 

and the solvent and excess acetic acid evaporated under vacuum on the 

steam bath. (All operations on the mixture of free bases were carried out 

as quickly as possible to prevent air oxidation of the tetrahydro compound. 

The residual yellow mixture of gum and crystals was taken up in a 

minimum amount of chloroform and chromatographed on a column of 33 g. of 

cellulose which had been slurried in chloroform with 11 ml. of a solution 

of glacial acetic acid in water (l% by volume). Fifty ml. fractions were 

collected. As each fraction was collected, it was treated with a few ml. 

of dilute aqueous hydrochloric acid to prevent air oxidation of the bases. 

The column was eluted with a series of wet solvents, starting with 

Skellysolve B, then Skellysolve B-chloroform and pure chloroform, until 

the tars had been eluted. Then a series of chloroform-n-butanol solvents, 

saturated with water and containing increasing amounts of n-butanol was 

employed. Chloroform-n-butanol (2.5:1, v:v) eluted solid material in 

fractions 34 to 37 and 43 to 68, 

Fractions 34 to 37 showed the ultraviolet absorption characteristic 

of tetrahvdroquinolizinium salts. The fractions were combined, the wash 
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solvent (methanol) evaporated, and the perchlorate salt formed by the 

addition of water, a few drops of glacial acetic acid and dropwise 10% 

aqueous sodium perchlorate solution until precipitation was complete. 

Crystallization of the resulting precipitate from aqueous ethanol gave 

creamr-colored crystals melting 242-246°C. A mixture with an authentic 

sample of 1,2,3*4-tetrahydro-12H-indolo^,3-âZquinolizinium perchlorate 

melted at 241-246°C. Ultraviolet and infrared absorption curves were 

identical. 

Fractions 43 to 68 showed the ultraviolet absorption characteristic 

of the wholly aromatized quinolizine ring system. These fractions were 

combined with methanol, the solvent evaporated to a small volume, and the 

solution divided into two parts. One half was treated dropwise with a 

saturated solution of picric acid in methanol until precipitation was com­

plete, and the crystals filtered. Crystallization from absolute ethanol 

gave crystals melting at 248-251°C., unchanged by admixture with authentic 

crystals of 12H-indolo 2̂,3-a7quinolizinium picrate. The second half was 

heated and ether added to the cloud-point. Cooling overnight produced 

long needles, which were filtered from the mother liquors and dried under 

vacuum at 80°C. for three hours, m. p. 291-296°C. (dec.) The literature 

value for the melting point of 12H-indolo 2̂,3-a7quinolizinium chloride is 

295°C« (dec.)(8). The ultraviolet spectrum of the hydrochloride in 95% 

ethanol was identical with that recorded in the literature: \max. (log6 ) : 

244 ngi (4.43), 294 (4.18), 345 (4.27), 388 (4.10)(8). 

The yield of recrystallized tetrahydro perchlorate was 48 mg., 8.4%; 

of recrystallized picratei 20.9 mg.. 4-67%: of recrystallized hydrochlo­

ride, 10.3 mg., 4.05%; total yield of cyclized material, 17.1$. 
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Large-Scale Dehydrogenation of 
1-^3 -(3-indolyl-) ethyl^3-ethylpiperidine 

1-/^ -(3-Indolyl-)ethyl^3-ethylpiperidine (m. p. 112-H3-5°C.) was 

dehydrogenated over 5% palladium-on-charcoal catalyst using the same amounts 

of substrate and catalyst and the same conditions as were employed in the 

previous procedure. 

The cooled reaction flask was washed once with benzene to remove a 

tarry sublimate. The dry solids were then extracted continuously overnight 

with commercial anhydrous methanol with several ml, of glacial acetic acid 

added. Solvents were removed from the resulting fluorescent yellow solu­

tion under vacuum and the residue dissolved in a mixture of chloroform and 

3N aqueous potassium hydroxide. The deep orange lower layer was separ­

ated and the aqueous layer extracted exhaustively with chloroform. After 

the combined organic extracts were washed, dried over anhydrous sodium 

sulfate and filtered, glacial acetic acid was added dropwise until the 

bright orange color was discharged. 

Solvent and excess acetic acid were removed under vacuum with gentle 

heating and the residue transferred with a minimum volume of chloroform 

to a chromatographic column prepared from 33 g. of cellulose and 11 ml. of 

dilute aqueous acetic acid solution (l% by volume) slurried together in 

dry chloroform. Fifty ml. fractions were collected and treated with 

dilute aqueous hydrochloric acid to prevent air oxidation of the tetra-

hydro bases* 

The column was eluted with 50 ml. of wet chloroform to remove tars, 

followed by a wet chloroform-butanol (5:1, v:v) mixture. Solvents were 



www.manaraa.com

63 

evaporated on a steam plate. Solid material appeared on evaporation of 

fractions 2 through 10. 

Fractions 2 through 5 possessed ultraviolet absorption comparable 

with that recorded for tetrahydroflavopereirine (6). Test amounts of 

perchlorate formed from them melted at 217-220°C. (fractions 2 and 3) and 

225-228°C. (fractions 4 and 5); the literature value for the melting 

point of tetrahydroflavopereirine perchlorate is 220-222°C. (6). Frac­

tions 2 through 5 were combined, the wash methanol evaporated, the residue 

dissolved in hot water and the perchlorate salt formed by dropwise addi­

tion of 10% aqueous sodium perchlorate. Two recrystallizations from 

absolute ethanol gave crystals melting 219-222°C., unchanged by admixture 

with authentic crystals of tetrahydrofalvopere irine. The infrared 

absorption spectrum (KBr pellet) was identical with that of authentic 

tetrahydroflavopereirine. The ultraviolet spectrum (95% ethanol) of these 

crystals was identical with that recorded in the literature: \max. (logé): 

253*^(4.51), 307 (4.33), 367 (3.63)(6). Yield of recrystallized per­

chlorate: 30.9 mg., 8.8%. 

Fraction 6 showed complex ultraviolet absorption indicative of a 

roughly equimolar mixture of tetrahydro and fully aromatic compounds. 

Formation of the perchlorate as above and recrystallization from iso-

propanol(with charcoaling) gave crystals melting from 175°C« to above 

280°C. The amount of recrystallized material, 3.1 mg., was not considered 

sufficient to warrant further separation. 

Fractions 7 through 10 exhibited the ultraviolet absorption charac­

teristic of the wholly aromatic flavopereirine system. However test 
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samples, of the perchlorate salt melted between 230 and 310°G, The litera­

ture values for the melting point of natural and synthetic flavopereirine 

perchlorate range from 30S°C. (3b) through 3l6-317°G, (6) to 330-331°C. 

(l35)• The infrared spectra of repeatedly recrystallized samples showed 

slight differences when compared with the infrared absorption spectrum of 

an authentic sample of flavopereirine perchlorate» 

Fractions 7 through 10 were combined and the salts converted to the 

free bases with 3N aqueous potassium hydroxide. The bright orange solids 

were dissolved and extracted into chloroform. The chloroform extracts 

were combined, washed and dried over anhydrous sodium sulfate. After 

filtration and addition of glacial acetic acid, the solvent and excess 

acetic acid were evaporated and the residue transferred to the same column 

used in the initial fractionation, using a minimum amount of chloroform. 

Fifty ml. fractions were collected during the chromatography and 

dilute hydrochloric acid added. Solvents were evaporated on a steam plate 

and the residue of each fraction transferred to a test tube with a small 

amount of water. The presence of ammonium base was determined by the 

addition of an excess of 10% aqueous sodium perchlorate solution. 

Wet chloroform was used to elute fractions 1 through 38, and wet 

chloroform-n-butanol to elute fractions 39 through 46 (9:1, v:v) and 47 

through 56 (5:1, v:v). 

The cream-colored precipitates formed in fractions 9 through 34 

showed ultraviolet absorption spectra characteristic of the flavopereirine 

system. However, when the mixtures were combined and filtered and the 

sol Ms renryst.al liy.p.d from i sorirnnyl ml cohoX the rman Thine crystals mel ted 
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rather sharply between 238-242°C. Recrystallization from isopropyl-

alc-ohol-isopropyl ether mixtures raised this to 246-252°C. An authentic 

speciman of iso-tetrahydroflavopereirine perchlorate melted partly at 

217°G., largely at 248-254°C* A mixture of the two substances melted at 

24.6-252°C. The infrared (KBr pellet) and ultraviolet (95% ethanol) 

spectra of the substances were identical. 

U. V. Spectrum: \max. (loge): 207vy<(4.40), 252 (4.48), 307 (4*34), 

368 (3.70). 

I. R. Spectrum: figure 1. 

Yield of recrystallized perchlorate: 8.4 mg., 2.4%. 

The precipitates formed in fractions 40 through 49 also showed the 

characteristic flavopereirine ultraviolet absorption pattern. The combined 

precipitates were recrystallized from isopropyl alcohol and then water, 

m. p. 320-325°C. Comparison of this melting point with an authentic 

specimen of flavopereirine proved difficult because the melting point of 

the authentic material varied with the solvent of crystallization and 

method of drying. Invariably it was above the literature value of 316-

317°C« (6) for this particular source. A sample of each was recrystal­

lized from water and dried overnight at 80°C., 1 mm. Hg pressure; the 

mixture melted at 323-327°C. The infrared sp&ctra (in KBr pellets) were 

identical. The ultraviolet spectrum (in 95% ethanol) was identical with 

that recorded in the literature (6): ̂ max. (logé): 230 mji (4*40), 238 
(4.43), 248 (4.39), 294 (4*14), 351 (4.24), 390 (4*14). Yield of re­

crystallized perchlorate, 2.3 mg. (O066%). Total yield of cyclized 

iiiawoi .Lew.* 
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Other Compounds Used in This Study 

Sufficient -(3-indolyl-)ethyl^S-ethylpiperidine to carry out 

the large-scale dehydrogenation was donated by Dr. Borje Wickberg. Dr. 

Wickberg also made available authentic samples of l,2,3,4,6,7,12,12b-octa-

hydr oindolo-^2,3-&7quinolizine and iso-tetrahydroflavopereirine perchlorate 

for purposes of conparison. 

Samples of flavopereirine perchlorate and tetrahydroflavopereirine 

perchlorate were obtained from Professor Henry Rapoport. 

Attempted Synthesis of Flavoserpentine 

Synthesis of 3-Ethyl-4-methylpiperidine 

The reduction of 3-ethyl-4-methylpyridine was attempted. No uptake 

of hydrogen was observed on exposing the compound to atmospheric-pressure 

hydrogen in the presence of platinum or Raney nickel (W-2) in acidic, 

neutral or basic aqueous or alcoholic solutions; to low-pressure hydrogen 

in the presence of platinum in aqueous hydrochloric acid, glacial acetic 

acid or methanolic potassium hydroxide. Erratic uptake of hydrogen was 

observed under 2000 p.s.i. of hydrogen between 100 and 200°C, in the 

presence of Raney nickel (W-2) in cyclohexane solution. 

Attempts to isolate piperidines from those runs in which hydrogen up­

take occurred were unsuccessful. Infrared spectra of the reaction products 

remaining after solvent was removed under vacuum showed only small amounts 

of N-H absorption. 
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Synthesis of Indolylacetyl Chloride 

The method of Shaw et aj.. (137) was employed, using 10 g. of indo­

leacetic acid. Yield of combined crops of acyl chloride, 3*6 g., 32.6%; 

m. p. of second crop, 59-65°C. 

Reaction of Indolvlacetvl Chloride 
With Reduction Mixtures 

In several experiments an attempt was made to separate any piperi-

dines present in the reaction mixture by reacting the entire reduction 

mixture directly with indolylacetyl chloride. The method of Shaw et al. 

(137) was used, substituting dropwise addition of the reduction mixture 

under nitrogen to the solution of the acyl chloride for the introduction 

of ammonia gas. 

After warming to room temperature overnight, the mixture of products 

was freed of solvent under vacuum, dissolved in ether, washed with aqueous 

sodium bicarbonate solution and water until neutral, dried over sodium 

sulfate and filtered. 

Because of previous difficulties in crystallizing other compounds of 

this series, each reaction mixture was taken through the entire reaction 

sequence of reduction and dehydrogenation and an attempt made to isolate 

flavoserpentine. 

Reduction of Reaction Mixtures 

The neutral fraction from each condensation was reduced with a four­

fold molar excess nf "lithium aluminum hydride (on the basis of complete 
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reduction of the pyridine and complete conversion to the amide) in re-

fluxing tetrahydrofuran purified just before use. 

The reduction mixture was treated with a slurry of sedium sulfate in 

water to decompose excess hydride and extracted with chloroform or methy­

lene chloride. Solvents were removed from the extract under vacuum, the 

residue dissolved in chloroform, dried over anhydrous sodium sulfate, 

filtered and freed of solvent under vacuum. 

Dehydrogenation of Reduction Mixtures 

Because at least one of the products (flavoserpentine) of dehydro-

genation would be easy to recognize if the reaction sequence had succeeded, 

this procedure was decided on as a simple diagnostic tool. A portion of 

the oil remaining after the reduction was heated under nitrogen for twelve 

minutes at 300°C. in the presence of twice its weight of 10% palladium-on-

charcoal after treatment with anhydrous hydrogen chloride gas. After 

cooling under nitrogen, the reaction mixture was extracted overnight with 

methanol containing a few ml. of glacial acetic acid. The extracting 

solvent was removed under vacuum. 

After one such sequence, employing 233 mg. of oil, a mixture of 

crystals and gum remained* Transformation of a portion of this mixture to 

the picrate and crystallization from ethanol produced crystals melting 

287-290°C. undepressed on admixture with authentic flavoserpentine. The 

ultraviolet spectrum of the mixture showed peaks which could be attributed 

to a mixture tetrahydro and fully aromatic quinolizines. 

This mixture was treated with chloroform and dilute aqueous potassium 
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solution, and the aqueous layer extracted exhaustively with chloroform 

until colorless# The extracts were combined, washed with water, dried 

over sodium sulfate, filtered, glacial acetic acid added to discharge the 

deep orange color, and the solution evaporated under vacuum. 

Chromatography of the resulting mixture on a column of 33 g. of 

cellulose which had been slurried with 11 ml, of 1% aqueous acetic acid 

separated the mixture into fractions evidencing the ultraviolet absorption 

of the tetrahydro compound (ll through 17) and of the aromatic compound 

(20 through 23) upon elation with a mixture of wet chloroform-n-butanol 

(8/1, v/v). Fractions 20 through 24 were combined, converted to the 

perchlorate salt, and crystallized from water. The quantity of crystals 

was insufficient for a satisfactory Nujol infrared spectrum, but the 

position and relative heights of those peaks which could be observed 

agreed exactly with those of flavoserpentine perchlorate. 

Reaction of Phenyllithium with 
3-Ethyl-4-methylpyridine 

lithium wire (4 g«, 0.58 g. atom, cut into short lengths) and sodium-

dried ether (10 ml.) were treated with a few ml. of a solution of bromo-

benzene (40 g., 0.255 mole) in ether (200 ml., sodium-dried) under 

nitrogen in a flame-dried apparatus and the attached stirrer started. 

When refluxing had begun, the remainder of the bromobenzene was added 

dropwise at such a rate as to maintain gentle boiling. Total addition 

time was about two hours. 

To the above solution was added dropwise a 3-ethyl-4-methylpyridine 

(24 g., 0.2 mole, redistilled commercial product, stored over sodium 
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hydroxide pellets) in ether (50 ml., sodiunwiried) over a period of 

fifteen minutes under nitrogen with stirring. 

The resulting deep red solution was poured through a bit of coarse 

glass wool into a 1 liter flask containing 200 g. of crushed solid carbon 

dioxide. The mixture was shaken and an additional 200 g. of carbon 

dioxide added. The excess carbon dioxide was allowed to evaporate from 

the yellow solution and the ether removed under vacuum without heating. 

The above solids were dissolved in commercial anhydrous methanol 

and the solution cooled to -20°C. in a Dewar flask containing crushed 

solid carbon dioxide. Commercial anhydrous methanol, chilled to -20°C., 

was added portion-wise and the mixture saturated at this temperature with 

anhydrous hydrogen chloride gas. The rate of addition was such that the 

temperature of the reaction mixture did not rise above -5°C. After ex­

haustive saturation of the mixture with anhydrous hydrogen chloride gas, 

it was allowed to stand overnight at room temperature. 

Solvents were removed under vacuum from the reaction mixture and 

chloroform solid potassium carbonate and water added. This mixture was 

heated for one hour below the reflux temperature, filtered, and the 

solvent removed under vacuum. The resulting gum was distilled under 

approximately 1 mm. Hg pressure; fraction 1 boiled below 100°C., 1.35 g.; 

fraction 2 boiled between 110 and 140°C., 3 g»; fraction 3 boiled between 

140 and 145°C., 7,55 g. On distillation under 0.5 mm. Hg pressure 

fraction 3 boiled between 86 and 90°C. Vapor phase chromatography of 

arbitrary cuts from this distillation contained approximately the same 

co"pl?x MzturS; 5hovd2l" tvT? ™=jor and at least. fMve minor neaks in the 
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chromâtogram. The same conplex mixture was eluted with Skellysolve B 

from an alumina column. 

Fraction 3 gave a copious yellow picrate from saturated methanolic 

picric acid. Recrystallization from the minimum volume of 95% ethanol 

gave crystals melting 204.5 to 206.5°G. Total yield of picrate, 0.76 g. 

A portion of the picrate was converted to free base with sodium hydroxide 

solution, extracted into chloroform, dried over sodium sulfate, filtered 

and the solvent removed under vacuum with heating. Nuclear magnetic 

resonance and infrared spectra were recorded for the residual material, 

I. R. Spectrum (CC14): figure 1. 

N. M. R. Spectrum (15% in CC14, c.p.s. relative to tetramethylsilane): 

figure 3. 

Anal. Calcd for G20H18M407! C> 56.34; H, 4.25; N, 13.14. Found: 

C, 55.80; H, 4.13; N, 13.60. 

Dehydrogenation of Ajmalicine 

Commercial tetrahydroserpentine (ajmalicine) (104 mg., 0.296 mmole.) 

was mixed with palladiura-on-charcoal (200 mg. of 5%) and treated with two 

ml, methanol and a drop of 12M aqueous hydrochloric acid. The mixture was 

evaporated to dryness under vacuum with heating, the vessel flushed with 

nitrogen and heated under nitrogen at atmospheric pressure at 300°C. for 

twenty-three minutes. 

After cooling under nitrogen, the resulting mixture was extracted 

continuously overnight with methanol containing a few ml. of glacial 

acetic acid. The extract was evaporated under vacuum leaving a mixture 
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of yellow hygroscopic crystals and gum. The mixture was converted to the 

free bases with aqueous sodium hydroxide solution and extracted with 

chloroform. This solution was washed with water, dried over anhydrous 

sodium sulfate powder, filtered, treated with glacial acetic acid, and 

evaporated under vacuum. The resulting gum was transferred to a column 

of cellulose (33 g.) which had been slurried with dilute aqueous acetic 

acid (11 ml., 1%} v/v) and the column eluted with wet chloroform (seven 

50 ml. fractions) rollowed by wet chloroform-n-butanol (4/l, v/v) (nine­

teen fractions). Each fraction was treated with a few ml. of dilute 

aqueous hydrochloric acid before the solvents were evaporated. Crystals 

formed from fractions 10 through 27 j the ultraviolet spectrum of these 

fractions was identical with that of the indolo^2,3-a/quinolizinlum 

chromophore. The total weight of crystals: 53*9 mg.; yield, 63.6%. 

Crystals of the hydrochloride from fraction 15 did not melt below 

350°C., but darkened above 309°C. The picrate formed from this fraction 

melted 293-295°C. after recrystallization from ethanol. The literature 

value for the melting point of flavoserpentine picrate is 291°. The 

perchlorate from fraction 17, recrystallized from water, melted 307-309°C. 

The literature value (10) for the melting point of flavoserpentine per­

chlorate is 308°C. 

Catalytic Reduction of Flavoserpentine 

Ajmalicine (200 mg., 0.568 mmole.) was dehydrogenated, the dehydro-

genation mixture extracted, the extraction mixture evaporated as 

described above. 
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The product mixture was dissolved in commercial absolute methanol 

(approximately 30 ml.) and platinum, oxide (113 mg.) and potassium hydroxide 

(two pellets) added and this mixture immediately reduced at 55.5 p.s.i. 

for forty-eight hours. 

The reaction mixture was filtered, the filtrate treated with hydro­

chloric acid, and an attempt made to partition the products according to 

their basicity after the methanol had been replaced with ether. When the 

strongly basic compounds (obtained by chloroform extraction of the solu­

tion when basified above pH 10 with sodium hydroxide solution) formed a 

broadly-melting perchlorate on treatment with glacial acetic acid and 

sodium perchlorate solution (44*6 mg* after one crystallization from 

methanol-water) this approach was abandoned. All extracts and crystals 

were recombined, basified with aqueous potassium hydroxide solution, and 

the bases extracted into chloroform. The chloroform extracts were com­

bined, washed with water, dried over powdered anhydrous sodium sulfate, 

filtered, treated with glacial acetic acid in excess and solvents and 

excess acid removed under vacuum. 

The residue was chromatographed on a column of cellulose (33 g») 

which had been slurried with dilute aqueous acetic acid (ll ml. of a 2% 

solution by volume). Blution with wet chloroform followed by treatment 

with aqueous hydrochloric acid produced crystals in fractions 3 through 5• 

The perchlorate was formed and recrystallized from iso-propanol-iso-

propyl ether, and melted over a wide range: 155-162°C. An analytical 

sample, recrystallized from water and dried under vacuum at 80°C. over­

night, showed no change in melting point. Total yield oi recrystallized 
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perchlorate, 22,5 mg., 10.9$ from ajmalicine. 

Anal. Calcd. for C-^Hg^ClO^î C, 59.25; H, 5.80; N, 7*68. Found: 

C, 59.69; H, 5.87; N, 7.56. 
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DISCUSSION 

The synthesis of the indole alkaloid ring skeleton of such molecules 

as flavopereirine (IE) and Z2> -yohimbine (V) 

can be approached in many ways. The most flexible approach involves the 

construction of ring C (c.f,£-yohimbine (V)) at the end of the synthesis, 

as the four syntheses of flavopereirine previously cited (pp. 9-11) 

demonstrate. When this investigation was undertaken, no convenient method 

of synthesizing the basic indole alkaloid skeleton by eyeligation of ring 

C had been described. However, the accidental synthesis by Julian et al. 

(66) of the spiro system (CLXXVII) related to oxindole alkaloids appeared 

promising. 

CH3O2C 

OH 

CLXXVI I  

If an oxidative formation of ring C along the lines of Julian's 
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synthesis could be achieved, it would offer several advantages. First, 

the necessary starting materials would be relatively easy to obtain. Many 

substituted piperidines or tetrahydroisoquinolines are available commer­

cially, or their syntheses may be achieved by well-known methods; e.g. 

indoleacetic esters can be bought and indoleacetyl chloride can be made 

readily. Second, the combination of one of these latter reactants with 

the necessary amine to form an amide and the hydride reduction of the 

amide to the required amine are both standard organic reactions. Third, 

the dehydrogenativa ring closure, if feasible, might be a quick and 

straightforward reaction. Provided that mixtures of products resulting 

from the dehydrogenation could be separated, the above sequence would then 

represent a facile method of preparing the indole alkaloid skeleton. In 

situations where the yield of product was not critical (such as an attempt 

to prove the structure of a new compound by synthesis) it would provide a 

useful addition to the methods already at hand for such a synthesis. 

The proposed cyclization could be postulated to proceed in the follow­

ing reaction sequence. In the temperature range usually employed for 

palladium-catalyzed dehydrogenations - 200-300°C. - and under acidic con­

ditions, the piperidine ring would be expected to lose hydrogen, yielding 

a tetrahydropyridinium salt (CLXXVIII to CLXXIX). There are ample 

analogies for the addition of a nucleophile to such a system, e.g., the 

synthesis of flavopereirine by The sing and Festag (12). The alpha 

R 
•N 

CLXXVIII 
CLXXIX 
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position of the indole nucleus represents such an internal nucleophile 

(CLXXX to CLXXXI). Elimination of the hydrogen at C-2 would restore the 

indole nucleus (CLXXXI to CLXXXII). 

Since the resulting tetracyclic system is still susceptible to dehydro­

genation, ring C or ring C and D dehydro compounds might be expected. The 

extent of such dehydrogenation would depend both on the nature of the new 

ring system and on the conditions employed for the reaction. 

As a preliminary study several items had to be determined experimen­

tally. First, what were the optimum conditions for cyclization. Second, 

what was the level of dehydrogenation of the product (or products). Third, 

could the level of dehydrogenation (or the ratio of the products) be 

altered by varying the reaction conditions. Fourth, if the reaction gave 

a mixture of products, how could they be separated from each other. 

With palladium-charcoal as catalyst, the temperature range between 

200 and 300°C. seemed the most promising: high enough for dehydrogenation 

to occur but low enough to avoid extensive decomposition of starting 

material or products, such as the elimination of the N-alkyl substituents. 

The experience of Schwyzer (88) LeHir et al. (83) and others indicated 

that the combination of acidic palladium-on-carbon and the amine salt was 

more selective and milder than neutral catalyst and the free amine. 

Supported palladium gave reaction mixtures more readily handled and ex­

tracted than did the metal xtself. In addxtxon, xt was commercially 

A H  

C L X X X I  C L X X X  C L X X X I I  
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available in consistent quality. 

The extent of cyclization was determined by means of ultraviolet 

spectroscopy of the reaction mixtures. Each of the possible cyclization 

products absorbed strongly in the ultraviolet and showed a complex pattern 

of absorption mari ma strikingly different from that of each of the other 

products and of starting material. This made it possible to run a large 

number of probe reactions on milligram scale, suspend each probe mixture 

in ethanol in a volumetric flask, decant the solvent and record its ultra­

violet absorption spectrum. Examination of the relative absorption was 

made at several wavelengths. 

A typical series of probes would be run in the following manner. The 

model compound, 3- (2-piperitiineothyl)-indole, was weighed out (close to 

10 mg.), dissolved to 10 ml, volume in a suitable solvent (chloroform, 

ether, methanol), and aliquots (l ml.) transferred to test tubes. The 

solvent was removed by gentle heating, and the residue transferred with 

a drop or two of solvent to a micro cone. After an approximate amount of 

catalyst had been added, either a base was added or the mixture was treated 

with a stream of dry hydrogen chloride gas. Any remaining solvent was re­

moved and the micro cone was flushed with nitrogen. While a steady flow 

of gas was maintained over the reaction misture, the cone was inserted in 

Wood's metal bath preheated to the desired temperature, and the mixture 

allowed to react. Thereafter the cone was removed and allowed to cool. 

The contents of each vessel were then carefully scraped and flushed 

with 95$ ethanol into a 10 ml. volumetric flask and diluted to the mark. 

To reaction mixtures which had been run under oasic conditions, a drop oi 
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concentrated hydrochloric acid was added before dilution. The flasks were 

allowed to stand at least an hour before ultraviolet spectra were recorded. 

In view of the high-intensity ultraviolet absorption of all products less 

than 10$ yield of cyclization product could be observed in the extracts. 

In addition, an estimate of the nature of the product mixture could be made 

with some accuracy. 

The initial probes were performed for varying times (one to twelve 

minutes) under nitrogen both with and without hydrogen chloride treatment 

at a temperature of about 300°C. The ultraviolet spectra of the extracts 

showed the appearance of the quinolizine chromophore after about eight 

minutes and an increase in its concentration up to twelve minutes. 

Small scale studies were continued to determine the effect of varying 

the amount of catalyst, of adding base, of performing the reaction in air, 

of extending the reaction time and of lowering the reaction temperature. 

The results of these studies may be summarized as follows. Both palladium-

black and palladium-on-charcoal worked equally well; the amount of 

palladium deposited on the charcoal - whether 5$ or 10$ - seemed to be 

immaterial. Varying the ratio of catalyst to substrate from two to three 

(by weight) did not affect the results. Since the reaction mixtures in 

which palladium-on-charcoal were employed were more free flowing than 

those employing palladium black, the foraer was used regularly. 

The extracts of several reactions performed in air showed only weak 

but complex absorption in the ultraviolet. Probably only cyclization had 

occurred and had been replaced or followed by catalyzed oxidation of start­

ing material or products. Subsequent reactions were performed in an 
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atmosphere of nitrogen gas. 

Schwyzer (88) determined that acid-washed palladium-on-charcoal was 

preferable to untreated catalyst, showing that yields were more re­

producible and generally higher. In our hands, the extracts of several 

probes in which solid potassium carbonate had been added to the reaction 

mixtures to give a known amount of base, evidenced no absorption in the 

ultraviolet which could be attributed to cyclized products. Large amounts 

of white vapor were evolved when these mixtures were first inserted into 

the metal bath, which undoubtedly arose from sublimation of starting 

material. All subsequent runs were performed after the starting materials 

in solution had been treated with anhydrous hydrogen chloride gas. In 

addition to converting the free base substrate to the amine hydrochloride, 

this effectively neutralized any residual basicity of the charcoal cata­

lyst support. 

The effect of temperature and time were investigated next. At 240 or 

270°C. there was a non-linear decrease in the ultraviolet absorption of 

the products at 345, 366 and 388 mp, which indicated that the concentration 

of both undelydrogenated and aromatic cyclization products decreased as 

the reaction time was extended from twelve to thirty-six minutes. In 

contrast to this, heating at 300°C. produced an increase in absorption at 

these wavelengths (and by inference an increase in cyclized product) 

between twelve and twenty-four minutes, followed by a decrease after this 

time. 

The cause of this behavior may be associated with the competition 

between the various amine salts for the active sites of the catalyst, but 
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would require an extended kinetic study for full interpretation. How­

ever, it was apparent that whatever products were formed below about 300°C. 

were destroyed on continued heating, and either the initial products or 

the decomposition products prevented formation of more cyclization products. 

Only after most of the starting material had been cyclized and dehydro-

genated, did the rate of decomposition of product appear to surpass that 

of formation of product. 

The optimum conditions for the formation of cyclized products (re­

gardless of state of further oxidation) therefore appeared to be the follow­

ing: palladium-on-charcoal catalyst (5-10$), employed under nitrogen at a 

temperature of about 300°C. for twelve to twenty-four minutes after treat­

ment of catalyst and starting material with dry hydrogen chloride or 

hydrochloric acid. These conditions were then utilized in large-scale 

dehydrogenations of 3-(2-piperidinoethyl)-indole and of 3^^~(3'-ethyl)-

piperidino ethylj-indole. 

The piperidinoethyl compound was dehydrogenated in quantities of 100 

to 500 mg. Separation of products from the catalyst was achieved by 

extraction of the mixture overnight with methanol to which acetic acid had 

been added to desorb the polar materials from the surface of the charcoal. 

In some experiments the mixture and reaction vessel were first washed with 

benzene to remove tars. Since the subsequent chromatography accomplished 

the same end, this wash was later omitted. 

When the extraction solvents were evaporated, a mixture of gum and 

crystals, which melted over a wide range, remained. Attempts to purify 

the crystals by recrystallization only raised the melting range, but did 
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not narrow it. It appeared that a mixture of related products, rather than 

a single product contaminated by degradation products, was at hand. The 

mixture of chlorides was subjected to column partition chromatography us­

ing cellulose-water ("buffered" with dilute acetic acid) as the stationary 

phase and mixtures of wet petroleum ether and chloroform as the mobile 

phase. In order to avoid a double series of eluted peaks due to a mixture 

of acetate and chloride anions, the mixture of chloride salts was converted 

to the acetate salts by treatment with aqueous strong alkali and chloro­

form. Strong base converts the quinolizinium. salts (CLXXXIII) to the free 

bases (CLXXXIV) which were extracted into chloroform. • After the chloro­

form layers were combined, washed with water to remove chloride ions and 

remaining strong base, dried and filtered, the organic bases were converted 

to the quinolizinium acetate salts by the addition of glacial acetic acid. 

The bases were deeply orange colored, while the salts had a light yellow 

color. Thus the addition of the correct amount of acid could be achieved 

by dropwise addition until a color change occurred. 

The resulting mixture of acetates was added to the top of the cellu­

lose column and the column eluted with various wet solvents. Regardless 

of the concentration of acetic acid in the stationary phase, tars were 

CLXXXIII CLXXXIV 
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consistently eluted with wet petroleum ether. In addition, any non-vola-

tized decomposition products were undboutedly separated at thic point. 

Thus, in keeping with the observations (c.f., 51) that ̂ -substituted 

piperidines lose the N-alkyl group on catalytic dehydrogenation, it was 

expected that a certain amount of starting material would be converted to 

the pyridine and some indolic product: 3_ethylindole, skatole or indole. 

This would account for the white fumes and pink sublimate observed in 

even the acidic dehydrogenations, as well as for the strong odor of skatole. 

Elution with wet petroleum ether-chloroform mixtures or with wet 

chloroform did not remove solid materials from the columns which contained 

less than about 0*5% acetic acid. In these cases, mixtures of n-butanol 

and chloroform, saturated with water, were used. The amount of butanol 

varied with the nature of the mixture and the amount of acetic acid in the 

stationary phase, but generally ranged between 10% and 50%. Elution with 

higher percentages of butanol seldom removed any solid material. 

However, if the concentration of acetic acid was increased to about 1$ 

(by volume) crystalline solids could be recovered on elution with wet 

chloroform. Apparently both partition and adsorption were occurring on 

the column, and the presence of more acetic acid decreased the extent of 

adsorption. Since the eluting solvents were not saturated with the mix­

ture that made up the stationary phase, the acetic acid was gradually 

leached off the column. Thus, when the product mixture from the dehydro­

genation of the ethylpiperidine derivative was first chromatographed, the 

solids were rapidly eluted by 500 ml. of wet 5:1 chloroform. When frac­

tions 7 through 10 were rechromatographed on the same column, n-butanol, 
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nearly two liters of wet chloroform and a liter of chloroforawi-butanol 

were required to elate all solid material. 

Using a suitable combination of eluting solvents with a compatible 

concentration of acetic acid in the stationary phase, it was possible to 

separate the dehydrogenation product mixture into two crystalline sub­

stances, each possessing distinct ultraviolet and infrared absorption 

spectra and different, moderately sharp melting points (as perchlorates). 

The material which was consistently eluted first proved to be identical 

in all respects with a sample of l,2,3,4-tetrahydro-12H-indolô ,3-a7-

quinolizinium perchlorate, and the material eluted later with a sample of 

12H-indolo/2,y-Qquinolizinium picrate (see later discussion concerning 

the synthesis of authentic samples of these compounds). 

The tarry initial fractions from the chromatography did not yield 

solid material with hydrochloric acid, perchloric acid or picric acid. 

Had any octahydroquinolizine survived the dehydrogenation, it would have 

appeared in these fractions. Since the initial small-scale reactions as 

well as the large-scale runs were directed toward forming and isolating 

the anhydronium salts of this system, these fractions were not investi­

gated further. However, the ready formation of the dehydrogenated tetra-

cycles indicated that any unoxidized cyclized material present in the 

product mixture would have arisen near the end of the heating period. At 

best, it would have represented only a small percentage of the total 

cyclized product. 

The dehydrogenations of the ethylpiperidine compound (CLXXX?) and 

separation of products and. the product isolation were performed in the 
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same manner. In all the attempts, the tetrahydroquinolizine which was 

identical with tetrabydroflavopereirine separated readily and cleanly 

from the other substances present. However, the quinolizine compound 

which showed properties nearly identical with those of flavopereirine re­

mained elusively impure through repeated recrystallizations. 

Since the ultraviolet spectra of fractions 6 through 8 from one 

preparation showed decreasing amounts of the tetrahydroquinolizinium 

chromophore, it was assumed that the impurity was simply tetrahydro-

flavopereirine. Purification was then attempted by rechromatographing 

the combined later fractions on the same column of cellulose used for the 

initial separation. This resulted in an impressively sharp separation of 

the mixture into two Gaussian-type peaks. The initially eluted material 

exhibited an ultraviolet spectrum nearly identical with that of tetrahydro-

flavopereirine, but its perchlorate melted fairly sharply 30°C. higher 

than that of tetrahydroflavopereir ine. The infrared spectra of the two 

materials were nearly identical. However, the physical properties of 

this new material were identical with those of iso-tetrahydroflavoper-

peirine perchlorate (GLXXXVI). A mixture with an authentic sample of 

this compound showed no change in melting point. 

CLXXXV 
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C L X X X V I  

M I 
c2H5 

CI O4 

The material eluted at the end, now freed of the isotetrahydro com­

pound, proved to be identical in all respects with authentic flavoper­

eirine. 

The yield of the isoflavopereirine systems was lower (no isoflavo-

pereirine itself was isolated) than that of the flavopereirine systems. 

Presumably the ethyl group offers enough steric hindrance in the first 

step of the oxidative cyclization, the dehydrogenation of the piperidine 

nucleus to a tetrahydropyridinium salt, to cause this dehydrogenation to 

proceed preponderantly in the direction away from the ethyl group. 

It was noteworthy that no isoflavopereirine was isolated. Either 

none had been formed or only small amounts had been present in fraction 

6, which had not been investigated further. However, tetrahydroiso-

flavopereirine is reported (133) to be far more difficultly dehydro-

genatible than tetrabydroflavopereirine. Undoubtedly, the transition 

state of the dehydrogenation of ring D would require high activation 

energy because of the necessity of placing the ethyl side chain into a 

position planar or nearly co-planar with the incipient fully aromatic 

system, a condition which would lead to a highly unfavorable steric re­

pulsion of the pari ethyl and indole ÎÎH substituants. 
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In addition to the oxidative cyclizations, the described method of 

dehydrogenation and purification was also employed on a tetracyclic and a 

pentacyclic indolic system. A sample of the tetrahydroquinolizinium 

bromide (CLXXXVII) was dehydrogenated to provide authentic 12H-indolo-

picrate. Ajmalicine (CXLVIIIA) was dehydrogenated to flavoserpentine 

(ID), a methylated homologue of flavopereirine. Although this sequence 

had been reported previously (77), the yields under these new conditions 

were considerably higher than under the reported conditions. 

Other compounds used in this study were either synthesized by known 

methods with only slight modifications, or obtained as gifts. Thus, 

1,2,3,4-tetrahydro-12H-indolo^2,3-a7quinolizinium perchlorate was pre­

pared by the method of Groves and Swan (135) without isolation of inter­

mediates, but employing a cellulose column for the final separation step. 

3-(2-Piperidinoethyl)-indole has been prepared in a number of ways. The 

sequence developed by Dr. B. Wickberg (133) was used. 

In addition to the dehydrogenation of the piperidino and the ethyl-

piperidino compounds discussed above, the dehydrogenation of two other 

compounds, the methyl and carbomethoxymethyl homologues of the ethyl-

piperidino compound, had been planned. Use of the former compound was 

^2,3-^quinolizinium bromide (CLXXXVIII) isolated and employed as the 

L L X X X V I I  CLXXXVIII 
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intended to lead to a novel synthesis of flavoserpentine (ID), and of the 

latter to a derivative of the dihydroc orynantheane-c orynantheidane type 

of structure (CLXXXD0. In each case, the first step of the projected 

synthetic sequence failed or proved erratic. 

The initial step in the synthesis of flavoserpentine was to have been 

the catalytic reduction of 3-ethyl-4-methylpyridine to the piperidine. 

Although this compound had been reduced by sodium in butanol (137) > it was 

hoped that the cis-hydrogenated piperidine could be obtained catalyticaUy. 

However, all attempts to reduce the pyridine failed; only under 2,000 

p.s.i. of hydrogen using Raney nickel in hexane at a temperature between 

100 and 180°C. was hydrogen taken up. But this was not a reproducible 

experience. In this one case, the mixture containing some piperidine, 

was reacted with indoleacetyl chloride in an attempt to form the amide. 

Without isolation of intermediates, the resulting oil was reduced with 

lithium aluminum hydride and dehydrogenated under the usual conditions. A 

small amount of material, exhibiting a comparable infrared spectrum (in 

Nujol, as the perchlorate) and identical melting point (as the picrate) 

with the infrared spectrum and melting point of the flavoserpentine deri­

vatives, could be isolated. Further attempts of this synthesis failed. 

CL XXXIX CXC 
CO2CH3 
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Although the recalcitrance of this simple system toward reduction is 

puzzling, a similar observation was recorded by Prasad and Swan (8) who 

reported the resistance of the diethyldihydroquinoizine system (CXC) to 

reduction in acetic acid over platinum. Further analogy can be found in 

the fact that flavoserpentine was far more difficult to reduce in our 

hands (using catalyst in a strongly basic solution) than the similar com­

pounds sempervirine (la) and flavopereirine (le). The reported times 

required to reduce these compounds are twenty minutes (138) and one hour 

(6) respectively. However, when flavoserpentine was reduced under 50 

p.o.i. pressure over platinum in strongly basic methanol, aliquots re­

moved after one hour, twelve hours, and twenty-four hours still exhibited 

ultraviolet absorption spectra characteristic of complex mixtures of the 

various reduction products of this system. Only after forty-eight hours 

did the ultraviolet absorption approach that of a single compound — the 

tetrahydro system (CXCI). But attempts to purify the product by simple 

cxc 
C2H5 

crystallization or a series of extractions from an increasingly basic 

aqueous solution nonetheless failed. Chromatography on cellulose produced 

a compound of reasonably sharp melting point which, on the basis of its 

ultraviolet spectrum and elemental analysis, was considered to be the 

u 6 LP oilyÛTÛ jl Âti-V û 5 ë rpèiiu jJûè \wvvù.> , vj.: <x iiixXOUrô ûx uiïô Cj. 5 cuiu ui/èuio 
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stereoisomers. Although catalytic reduction is generally considered to 

yield cis products, the pyridine system presents a plausible exception to 

this rule. The initial reduction can lead to a dihydropyridine system 

(CXCII to CXCIII) which is capable of undergoing reduction from either 

side of the ring. Although the preferential reduction would occur from 

the side of the smaller substituent, the proton, a ratio of transscis of 

1:4 or 1:3 is not inconceivable. Separation of such a mixture could 

prove difficult by the methods employed. 

The attempted synthesis of the carbomethoxymethylflavopereirine met 

with similar difficulties. The initial step here was to have been the 

carbonation of 3-ethyl-4-methylpyridine, The reaction of alpha or gamma 

methylated pyridines with phenyl lithium followed by addition of the 

methylpyridyl anion to carbon dioxide is a well known sequence. Follow­

ing treatment with anhydrous methanolic hydrogen chloride, the ester is 

isolated. However, when 3-ethyl-4-methylpyridine was employed as the 

starting material, the isolated oil showed less than 5% ester formation 

by infrared analysis. The only substance which could be isolated (other 

than recovered starting material) proved to be condensation product of 

phenyl lithium with the pyridine. 

This new ùumpuunû way XsOjuaLeU, pUl'XÎxyû âiiû auâiyaëû as iïiô pxCî'âwë, 

CXCII CXCIII 
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and converted to the free base for infrared and nuclear magnetic resonance 

analyses. 

A number of similar additions of the phenyl radical to pyridine 

nuclei have been reported by Abramovitch and coworkers (139). For example, 

phenyl lithium reacts with 3-methylpyridine to form phenylated product in 

forty-two percent yield. The product is a mixture of nineteen parts 

2-phenyl-3-methylpyridine and one part 2-phenyl-5-methylpyr idine. 

Nicotine reacts to form equal amounts of the 2-substituted and the 6-

substituted compound in thirty-four percent yield. However, both 3-amino-

pyridine and 3-methoxypyridine react with phenyl lithium to form solely 

the 2,3-disubstituted pyridine (140). The tendency of 3-substituted 

pyridines to undergo substitution at C-2 is not rationalized by these 

workers. However, this tendency together with the possibility of coordi­

nation between the free electron pair on the 3-substituent and the lithium 

is used to explain the exclusive formation of 2,3-disubstituted pyridines 

in the latter cases. The formation of equal amounts of 2-substituted and 

6-substituted material from nicotine is ascribed to the bulkiness of the 

K-methyl-tetrahydropyrrole ring which hinders the approach of the phenyl 

lithium reagent. 

By analogy with this work, the phenyl group of the product formed from 

phenyl lithium and 3-ethyl-4-methylpyridine is tentatively assigned to the 

2-position, The nuclear magnetic resonance (figure 3) spectrum exhibits a 

sharp single-proton absorption at a delta of 9.05 which may be assigned to 

the proton in the system C^H^-C-N=CH. However, the peaks between 433 c.p.s. 

are not readily assigned to individual protons. It is therefore not 
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possible to decide whether the product is 2-phenyl-3-ethyl-4-metbylpyri-

dine (which possesses a vicinal pair of protons on C-5 and C-6) or 

2-phenyl-4-methyl-5-ethylpyridine (which possesses single protons on C-3 

and C-6). 

Abramovitch et al. (139) cite several phenylation reactions from 

which the amount of phenylated products isolated was far less than the 

amounts isolated from his reaction conditions. The explanation given is 

that stringent conditions (refluxLng in toluene for seven hours) are 

required for lithium to be eliminated from the addition product formed 

from the pyridine and phenyl lithium. This would account for the low 

yield of phenylated product obtained from the reaction of phenyl lithium 

with 3-ethyl-4-methyl-pyridine, since this reaction was performed at 

35°C. for one hour. 
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Figure 1. Infrared Spectra 
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Figure 2» Ultraviolet Spectra of Preliminary 
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Figure 3<> Nuclear Magnetic Resonance Spectrum 
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SUMMARY 

...A study was undertaken of the use of palladium-catalyzed dehydro-

genation in forming carbon-carbon bonds as a tool of indole alkaloid 

synthesis. 

Methyl indoleacetate was reacted with piperidine to form indol-

sacetyl piperidine. This was reduced to yield -(3-indolyl-)ethyl^ 

piperidine. 

N-^3 -(3-indolyl-)ethyl^piperidine was dehydrogenated to yield 

1,2,3,4-tetrahydro-12H-indolo^2,3-a7quinolizinium chloride and 12H-indolo-

^2, 3-â7quinolizinium. chloride. 

1-^3 -(3-indolyl-) ethyl^3-ethylpiperidine was dehydrogenated to 

yield flavopereirine, tetrahydroflavopereirine and iso-tetrahydroflavo-

perpeirine. 

Ajmalicine was dehydrogenated to produce flavoserpentine. Flavo-

serpentine was reduced to yield tetrahydroflavoserpentine. 

3-Ethyl-4~methylpyridine failed to take hydrogen in the presence of 

platinum in hydrochloric acid, acetic acid or potassium hydroxide 

solution. 

3-Ethyl-4-methylpyridine reacted with phenyl lithium to yield a 

phenylated 3-ethyl-4-methylpyridine. 
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